991 resultados para Young Drivers.
Resumo:
Few states mandate that doctors or other health professionals must report unfit drivers to licensing authorities – and for good reason. Driving is an everyday practice for many Australians, but that doesn’t mean it’s a simple task. It takes several years for crash rates among young drivers to decline, and driving performance can be affected at any time by fatigue, distraction and impairment by alcohol or drugs...
Resumo:
While mobile phones have become ubiquitous in modern society, the use of mobile phones while driving is increasing at an alarming rate despite the associated crash risks. A significant safety concern is that driving while distracted by a mobile phone is more prevalent among young drivers, a less experienced driving cohort with elevated crash risk. The objective of this study was to examine the gap acceptance behavior of distracted young drivers at roundabouts. The CARRS-Q Advanced Driving Simulator was used to test participants on a simulated gap acceptance scenario at roundabouts. Conflicting traffic from the right approach of a four-legged roundabout were programmed to have a series of vehicles having the gaps between them proportionately increased from two to six seconds. Thirty-two licensed young drivers drove the simulator under three phone conditions: baseline (no phone conversation), hands-free and handheld phone conversations. Results show that distracted drivers started responding to the gap acceptance scenario at a distance closer to the roundabout and approached the roundabout at slower speeds. They also decelerated at faster rates to reduce their speeds prior to gap acceptance compared to non-distracted drivers. Although accepted gap sizes were not significantly different across phone conditions, differences in the safety margins at various gap sizes—measured by Post Encroachment Time (PET) between the driven vehicle and the conflicting vehicle—were statistically significant across phone conditions. PETs for distracted drivers were smaller across different gap sizes, suggesting a lower safety margin taken by distracted drivers compared to non-distracted drivers. The results aid in understanding how cognitive distraction resulting from mobile phone conversations while driving influences driving behavior during gap acceptance at roundabouts.
Resumo:
Purpose Road policing is a key method used to improve driver compliance with road laws. However, we have a very limited understanding of the perceptions of young drivers regarding police enforcement of road laws. This paper addresses this gap. Design/Methodology/Approach Within this study 238 young drivers from Queensland, Australia, aged 17-24 years (M = 18, SD = 1.54), with a provisional (intermediate) driver’s licence completed an online survey regarding their perceptions of police enforcement and their driver thrill seeking tendencies. This study considered whether these factors influenced self-reported transient (e.g., travelling speed) and fixed (e.g., blood alcohol concentration) road violations by the young drivers. Findings The results indicate that being detected by police for a traffic offence, and the frequency with which they display P-plates on their vehicle to indicate their licence status, are associated with both self-reported transient and fixed rule violations. Licence type, police avoidance behaviours and driver thrill seeking affected transient rule violations only, while perceptions of police enforcement affected fixed rule violations only. Practical implications This study suggests that police enforcement of young driver violations of traffic laws may not be as effective as expected and that we need to improve the way in which police enforce road laws for young novice drivers. Originality/value: This paper identifies that perceptions of police enforcement by young drivers does not influence all types of road offences.
Resumo:
National Highway Traffic Safety Administration, Office of Driver and Pedestrian Safety, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
National Highway Traffic Safety Administration, Office of Program Development and Evaluation, Washington, D.C.
Resumo:
Sleepiness is a significant contributor to car crashes and sleepiness related crashes have higher mortality and morbidity than other crashes. Young adult drivers are at particular risk for sleepiness related car crashes. It has been suggested that this is because young adults are typically sleepier than older adults because of chronic sleep loss, and more often drive at times of increased risk of acute sleepiness. This prospective study aimed to determine the relationship between predicted and perceived sleepiness while driving in 47 young-adult drivers over a 4-week period. Sleepiness levels were predicted by a model incorporating known circadian and sleep factors influencing alertness, and compared to subjective ratings of sleepiness during 25 18 driving episodes. Results suggested that young drivers frequently drive while at risk of crashing, at times of predicted sleepiness (>7% of episodes) and at times they felt themselves to be sleepy (>23% of episodes). A significant relationship was found between perceived and predicted estimates of sleepiness. However, the participants nonetheless drove at these times. The results of this study may help preventative programs to specifically target factors leading to increased sleepiness when driving (particularly time of day), and to focus interventions to stop young adults from driving when they feel sleepy. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The over represented number of novice drivers involved in crashes is alarming. Driver training is one of the interventions aimed at mitigating the number of crashes that involve young drivers. To our knowledge, Advanced Driver Assistance Systems (ADAS) have never been comprehensively used in designing an intelligent driver training system. Currently, there is a need to develop and evaluate ADAS that could assess driving competencies. The aim is to develop an unsupervised system called Intelligent Driver Training System (IDTS) that analyzes crash risks in a given driving situation. In order to design a comprehensive IDTS, data is collected from the Driver, Vehicle and Environment (DVE), synchronized and analyzed. The first implementation phase of this intelligent driver training system deals with synchronizing multiple variables acquired from DVE. RTMaps is used to collect and synchronize data like GPS, vehicle dynamics and driver head movement. After the data synchronization, maneuvers are segmented out as right turn, left turn and overtake. Each maneuver is composed of several individual tasks that are necessary to be performed in a sequential manner. This paper focuses on turn maneuvers. Some of the tasks required in the analysis of ‘turn’ maneuver are: detect the start and end of the turn, detect the indicator status change, check if the indicator was turned on within a safe distance and check the lane keeping during the turn maneuver. This paper proposes a fusion and analysis of heterogeneous data, mainly involved in driving, to determine the risk factor of particular maneuvers within the drive. It also explains the segmentation and risk analysis of the turn maneuver in a drive.
Resumo:
The over represented number of novice drivers involved in crashes is alarming. Driver training is one of the interventions aimed at mitigating the number of crashes that involve young drivers. Experienced drivers have better hazard perception ability compared to inexperienced drivers. Eye gaze patterns have been found to be an indicator of the driver's competency level. The aim of this paper is to develop an in-vehicle system which correlates information about the driver's gaze and vehicle dynamics, which is then used to assist driver trainers in assessing driving competency. This system allows visualization of the complete driving manoeuvre data on interactive maps. It uses an eye tracker and perspective projection algorithms to compute the depth of gaze and plots it on Google maps. This interactive map also features the trajectory of the vehicle and turn indicator usage. This system allows efficient and user friendly analysis of the driving task. It can be used by driver trainers and trainees to understand objectively the risks encountered during driving manoeuvres. This paper presents a prototype that plots the driver's eye gaze depth and direction on an interactive map along with the vehicle dynamics information. This prototype will be used in future to study the difference in gaze patterns in novice and experienced drivers prior to a certain manoeuvre.
Resumo:
Policy decisions are frequently influenced by more than research results alone. This review examines one road safety countermeasure, graduated driver licensing, in three jurisdictions and identifies how the conflict between mobility and safety goals can influence policy decisions relating to this countermeasure. Evaluations from around the world of graduated driver licensing have demonstrated clear reductions in crashes for young drivers. However, the introduction of this countermeasure may be affected, both positively and negatively, by the conflict some policy makers experience between ensuring individuals remain both mobile and safe as drivers. This review highlights how this conflict in policy decision making can serve to either facilitate or hinder the introduction of graduated driver licensing systems. However, policy makers whose focus on mobility is too strong when compared with safety may be mistaken, with evidence suggesting that after a graduated driver licensing system is introduced young drivers adapt their behaviour to the new system and remain mobile. As a result, policy makers should consciously acknowledge the conflict between mobility and safety and consider an appropriate balance in order to introduce these systems. Improvements to the licensing system can then be made in an incremental manner as the balance between these two priorities change. Policy makers can achieve an appropriate balance by using empirical evidence as a basis for their decisions.
Resumo:
The over representation of novice drivers in crashes is alarming. Research indicates that one in five drivers crashes within their first year of driving. Driver training is one of the interventions aimed at decreasing the number of crashes that involve young drivers. Currently, there is a need to develop comprehensive driver evaluation system that benefits from the advances in Driver Assistance Systems. Since driving is dependent on fuzzy inputs from the driver (i.e. approximate distance calculation from the other vehicles, approximate assumption of the other vehicle speed), it is necessary that the evaluation system is based on criteria and rules that handles uncertain and fuzzy characteristics of the drive. This paper presents a system that evaluates the data stream acquired from multiple in-vehicle sensors (acquired from Driver Vehicle Environment-DVE) using fuzzy rules and classifies the driving manoeuvres (i.e. overtake, lane change and turn) as low risk or high risk. The fuzzy rules use parameters such as following distance, frequency of mirror checks, gaze depth and scan area, distance with respect to lanes and excessive acceleration or braking during the manoeuvre to assess risk. The fuzzy rules to estimate risk are designed after analysing the selected driving manoeuvres performed by driver trainers. This paper focuses mainly on the difference in gaze pattern for experienced and novice drivers during the selected manoeuvres. Using this system, trainers of novice drivers would be able to empirically evaluate and give feedback to the novice drivers regarding their driving behaviour.
Resumo:
Automobiles have deeply impacted the way in which we travel but they have also contributed to many deaths and injury due to crashes. A number of reasons for these crashes have been pointed out by researchers. Inexperience has been identified as a contributing factor to road crashes. Driver’s driving abilities also play a vital role in judging the road environment and reacting in-time to avoid any possible collision. Therefore driver’s perceptual and motor skills remain the key factors impacting on road safety. Our failure to understand what is really important for learners, in terms of competent driving, is one of the many challenges for building better training programs. Driver training is one of the interventions aimed at decreasing the number of crashes that involve young drivers. Currently, there is a need to develop comprehensive driver evaluation system that benefits from the advances in Driver Assistance Systems. A multidisciplinary approach is necessary to explain how driving abilities evolves with on-road driving experience. To our knowledge, driver assistance systems have never been comprehensively used in a driver training context to assess the safety aspect of driving. The aim and novelty of this thesis is to develop and evaluate an Intelligent Driver Training System (IDTS) as an automated assessment tool that will help drivers and their trainers to comprehensively view complex driving manoeuvres and potentially provide effective feedback by post processing the data recorded during driving. This system is designed to help driver trainers to accurately evaluate driver performance and has the potential to provide valuable feedback to the drivers. Since driving is dependent on fuzzy inputs from the driver (i.e. approximate distance calculation from the other vehicles, approximate assumption of the other vehicle speed), it is necessary that the evaluation system is based on criteria and rules that handles uncertain and fuzzy characteristics of the driving tasks. Therefore, the proposed IDTS utilizes fuzzy set theory for the assessment of driver performance. The proposed research program focuses on integrating the multi-sensory information acquired from the vehicle, driver and environment to assess driving competencies. After information acquisition, the current research focuses on automated segmentation of the selected manoeuvres from the driving scenario. This leads to the creation of a model that determines a “competency” criterion through the driving performance protocol used by driver trainers (i.e. expert knowledge) to assess drivers. This is achieved by comprehensively evaluating and assessing the data stream acquired from multiple in-vehicle sensors using fuzzy rules and classifying the driving manoeuvres (i.e. overtake, lane change, T-crossing and turn) between low and high competency. The fuzzy rules use parameters such as following distance, gaze depth and scan area, distance with respect to lanes and excessive acceleration or braking during the manoeuvres to assess competency. These rules that identify driving competency were initially designed with the help of expert’s knowledge (i.e. driver trainers). In-order to fine tune these rules and the parameters that define these rules, a driving experiment was conducted to identify the empirical differences between novice and experienced drivers. The results from the driving experiment indicated that significant differences existed between novice and experienced driver, in terms of their gaze pattern and duration, speed, stop time at the T-crossing, lane keeping and the time spent in lanes while performing the selected manoeuvres. These differences were used to refine the fuzzy membership functions and rules that govern the assessments of the driving tasks. Next, this research focused on providing an integrated visual assessment interface to both driver trainers and their trainees. By providing a rich set of interactive graphical interfaces, displaying information about the driving tasks, Intelligent Driver Training System (IDTS) visualisation module has the potential to give empirical feedback to its users. Lastly, the validation of the IDTS system’s assessment was conducted by comparing IDTS objective assessments, for the driving experiment, with the subjective assessments of the driver trainers for particular manoeuvres. Results show that not only IDTS was able to match the subjective assessments made by driver trainers during the driving experiment but also identified some additional driving manoeuvres performed in low competency that were not identified by the driver trainers due to increased mental workload of trainers when assessing multiple variables that constitute driving. The validation of IDTS emphasized the need for an automated assessment tool that can segment the manoeuvres from the driving scenario, further investigate the variables within that manoeuvre to determine the manoeuvre’s competency and provide integrated visualisation regarding the manoeuvre to its users (i.e. trainers and trainees). Through analysis and validation it was shown that IDTS is a useful assistance tool for driver trainers to empirically assess and potentially provide feedback regarding the manoeuvres undertaken by the drivers.
Resumo:
Many drivers in highly motorised countries believe that aggressive driving is increasing. While the prevalence of the behaviour is difficult to reliably identify, the consequences of on-road aggression can be severe, with extreme cases resulting in property damage, injury and even death. This research program was undertaken to explore the nature of aggressive driving from within the framework of relevant psychological theory in order to enhance our understanding of the behaviour and to inform the development of relevant interventions. To guide the research a provisional ‘working’ definition of aggressive driving was proposed encapsulating the recurrent characteristics of the behaviour cited in the literature. The definition was: “aggressive driving is any on-road behaviour adopted by a driver that is intended to cause physical or psychological harm to another road user and is associated with feelings of frustration, anger or threat”. Two main theoretical perspectives informed the program of research. The first was Shinar’s (1998) frustration-aggression model, which identifies both the person-related and situational characteristics that contribute to aggressive driving, as well as proposing that aggressive behaviours can serve either an ‘instrumental’ or ‘hostile’ function. The second main perspective was Anderson and Bushman’s (2002) General Aggression Model. In contrast to Shinar’s model, the General Aggression Model reflects a broader perspective on human aggression that facilitates a more comprehensive examination of the emotional and cognitive aspects of aggressive behaviour. Study One (n = 48) examined aggressive driving behaviour from the perspective of young drivers as an at-risk group and involved conducting six focus groups, with eight participants in each. Qualitative analyses identified multiple situational and person-related factors that contribute to on-road aggression. Consistent with human aggression theory, examination of self-reported experiences of aggressive driving identified key psychological elements and processes that are experienced during on-road aggression. Participants cited several emotions experienced during an on-road incident: annoyance, frustration, anger, threat and excitement. Findings also suggest that off-road generated stress may transfer to the on-road environment, at times having severe consequences including crash involvement. Young drivers also appeared quick to experience negative attributions about the other driver, some having additional thoughts of taking action. Additionally, the results showed little difference between males and females in the severity of behavioural responses they were prepared to adopt, although females appeared more likely to displace their negative emotions. Following the self-reported on-road incident, evidence was also found of a post-event influence, with females being more likely to experience ongoing emotional effects after the event. This finding was evidenced by ruminating thoughts or distraction from tasks. However, the impact of such a post-event influence on later behaviours or interpersonal interactions appears to be minimal. Study Two involved the quantitative analysis of n = 926 surveys completed by a wide age range of drivers from across Queensland. The study aimed to explore the relationships between the theoretical components of aggressive driving that were identified in the literature review, and refined based on the findings of Study One. Regression analyses were used to examine participant emotional, cognitive and behavioural responses to two differing on-road scenarios whilst exploring the proposed theoretical framework. A number of socio-demographic, state and trait person-related variables such as age, pre-study emotions, trait aggression and problem-solving style were found to predict the likelihood of a negative emotional response such as frustration, anger, perceived threat, negative attributions and the likelihood of adopting either an instrumental or hostile behaviour in response to Scenarios One and Two. Complex relationships were found to exist between the variables, however, they were interpretable based on the literature review findings. Factor analysis revealed evidence supporting Shinar’s (1998) dichotomous description of on-road aggressive behaviours as being instrumental or hostile. The second stage of Study Two used logistic regression to examine the factors that predicted the potentially hostile aggressive drivers (n = 88) within the sample. These drivers were those who indicated a preparedness to engage in direct acts of interpersonal aggression on the road. Young, male drivers 17–24 years of age were more likely to be classified as potentially hostile aggressive drivers. Young drivers (17–24 years) also scored significantly higher than other drivers on all subscales of the Aggression Questionnaire (Buss & Perry, 1992) and on the ‘negative problem orientation’ and ‘impulsive careless style’ subscales of the Social Problem Solving Inventory – Revised (D’Zurilla, Nezu & Maydeu-Olivares, 2002). The potentially hostile aggressive drivers were also significantly more likely to engage in speeding and drink/drug driving behaviour. With regard to the emotional, cognitive and behavioural variables examined, the potentially hostile aggressive driver group also scored significantly higher than the ‘other driver’ group on most variables examined in the proposed theoretical framework. The variables contained in the framework of aggressive driving reliably distinguished potentially hostile aggressive drivers from other drivers (Nagalkerke R2 = .39). Study Three used a case study approach to conduct an in-depth examination of the psychosocial characteristics of n = 10 (9 males and 1 female) self-confessed hostile aggressive drivers. The self-confessed hostile aggressive drivers were aged 24–55 years of age. A large proportion of these drivers reported a Year 10 education or better and average–above average incomes. As a group, the drivers reported committing a number of speeding and unlicensed driving offences in the past three years and extensive histories of violations outside of this period. Considerable evidence was also found of exposure to a range of developmental risk factors for aggression that may have contributed to the driver’s on-road expression of aggression. These drivers scored significantly higher on the Aggression Questionnaire subscales and Social Problem Solving Inventory Revised subscales, ‘negative problem orientation’ and ‘impulsive/careless style’, than the general sample of drivers included in Study Two. The hostile aggressive driver also scored significantly higher on the Barrett Impulsivity Scale – 11 (Patton, Stanford & Barratt, 1995) measure of impulsivity than a male ‘inmate’, or female ‘general psychiatric’ comparison group. Using the Carlson Psychological Survey (Carlson, 1982), the self-confessed hostile aggressive drivers scored equal or higher scores than the comparison group of incarcerated individuals on the subscale measures of chemical abuse, thought disturbance, anti-social tendencies and self-depreciation. Using the Carlson Psychological Survey personality profiles, seven participants were profiled ‘markedly anti-social’, two were profiled ‘negative-explosive’ and one was profiled as ‘self-centred’. Qualitative analysis of the ten case study self-reports of on-road hostile aggression revealed a similar range of on-road situational factors to those identified in the literature review and Study One. Six of the case studies reported off-road generated stress that they believed contributed to the episodes of aggressive driving they recalled. Intense ‘anger’ or ‘rage’ were most frequently used to describe the emotions experienced in response to the perceived provocation. Less frequently ‘excitement’ and ‘fear’ were cited as relevant emotions. Notably, five of the case studies experienced difficulty articulating their emotions, suggesting emotional difficulties. Consistent with Study Two, these drivers reported negative attributions and most had thoughts of aggressive actions they would like to take. Similarly, these drivers adopted both instrumental and hostile aggressive behaviours during the self-reported incident. Nine participants showed little or no remorse for their behaviour and these drivers also appeared to exhibit low levels of personal insight. Interestingly, few incidents were brought to the attention of the authorities. Further, examination of the person-related characteristics of these drivers indicated that they may be more likely to have come from difficult or dysfunctional backgrounds and to have a history of anti-social behaviours on and off the road. The research program has several key theoretical implications. While many of the findings supported Shinar’s (1998) frustration-aggression model, two key areas of difference emerged. Firstly, aggressive driving behaviour does not always appear to be frustration driven, but can also be driven by feelings of excitation (consistent with the tenets of the General Aggression Model). Secondly, while the findings supported a distinction being made between instrumental and hostile aggressive behaviours, the characteristics of these two types of behaviours require more examination. For example, Shinar (1998) proposes that a driver will adopt an instrumental aggressive behaviour when their progress is impeded if it allows them to achieve their immediate goals (e.g. reaching their destination as quickly as possible); whereas they will engage in hostile aggressive behaviour if their path to their goal is blocked. However, the current results question this assertion, since many of the hostile aggressive drivers studied appeared prepared to engage in hostile acts irrespective of whether their goal was blocked or not. In fact, their behaviour appeared to be characterised by a preparedness to abandon their immediate goals (even if for a short period of time) in order to express their aggression. The use of the General Aggression Model enabled an examination of the three components of the ‘present internal state’ comprising emotions, cognitions and arousal and how these influence the likelihood of a person responding aggressively to an on-road situation. This provided a detailed insight into both the cognitive and emotional aspects of aggressive driving that have important implications for the design of relevant countermeasures. For example, the findings highlighted the potential value of utilising Cognitive Behavioural Therapy with aggressive drivers, particularly the more hostile offenders. Similarly, educational efforts need to be mindful of the way that person-related factors appear to influence one’s perception of another driver’s behaviour as aggressive or benign. Those drivers with a predisposition for aggression were more likely to perceive aggression or ‘wrong doing’ in an ambiguous on-road situation and respond with instrumental and/or hostile behaviour, highlighting the importance of perceptual processes in aggressive driving behaviour.
Resumo:
Motor vehicle crashes are a leading cause of death among young people. Fourteen percent of adolescents aged 13-14 report passenger-related injuries within three months. Intervention programs typically focus on young drivers and overlook passengers as potential protective influences. Graduated Driver Licensing restricts passenger numbers, and this study focuses on a complementary school-based intervention to increase passengers’ personal- and peer-protective behavior. The aim of this research was to assess the impact of the curriculum-based injury prevention program, Skills for Preventing Injury in Youth (SPIY), on passenger-related risk-taking and injuries, and intentions to intervene in friends’ risky road behavior. SPIY was implemented in Grade 8 Health classes and evaluated using survey and focus group data from 843 students across 10 Australian secondary schools. Intervention students reported less passenger-related risk-taking six months following the program. Their intention to protect friends from underage driving also increased. The results of this study show that a comprehensive, school-based program targeting individual and social changes can increase adolescent passenger safety.
Resumo:
This study investigated the effect of a fear-based personality trait, as conceptualised in Gray’s revised reinforcement sensitivity theory (RST) by the strength of the fight/flight/freeze system (FFFS), on young people’s driving simulator performance under induced psychosocial stress. Seventy-one young drivers completed the Jackson-5 questionnaire of RST traits, followed by a psychosocial stress or relaxation induction procedure (random allocation to groups) and then a city driving simulator task. Some support was found for the hypothesis that higher FFFS sensitivity would result in poorer driving performance under stress, in terms of significantly poorer hazard responses, possibly due to an increased attentional focus on the aversive cues inherent in the stress induction leaving reduced attentional capacity for the driving task. These results suggest that stress may lead to riskier driving behaviour in individuals with fearful RST personality styles.