514 resultados para Yoneda Algebras
Resumo:
The reduced Whitehead group $\SK$ of a graded division algebra graded by a torsion-free abelian group is studied. It is observed that the computations here are much more straightforward than in the non-graded setting. Bridges to the ungraded case are then established by the following two theorems: It is proved that $\SK$ of a tame valued division algebra over a henselian field coincides with $\SK$ of its associated graded division algebra. Furthermore, it is shown that $\SK$ of a graded division algebra is isomorphic to $\SK$ of its quotient division algebra. The first theorem gives the established formulas for the reduced Whitehead group of certain valued division algebras in a unified manner, whereas the latter theorem covers the stability of reduced Whitehead groups, and also describes $\SK$ for generic abelian crossed products.
Resumo:
The reduced unitary Whitehead group $\SK$ of a graded division algebra equipped with a unitary involution (i.e., an involution of the second kind) and graded by a torsion-free abelian group is studied. It is shown that calculations in the graded setting are much simpler than their nongraded counterparts. The bridge to the non-graded case is established by proving that the unitary $\SK$ of a tame valued division algebra wih a unitary involution over a henselian field coincides with the unitary $\SK$ of its associated graded division algebra. As a consequence, the graded approach allows us not only to recover results available in the literature with substantially easier proofs, but also to calculate the unitary $\SK$ for much wider classes of division algebras over henselian fields.
Resumo:
We show that if $\cl A$ is the tensor product of finitely many continuous nest algebras, $\cl B$ is a CDCSL algebra and $\cl A$ and $\cl B$ have the same normaliser semi-group then either $\cl A = \cl B$ or $\cl A^* = \cl B$.
Resumo:
We prove a continuity result for the map sending a masa-bimodule to its support. We characterise the convergence of a net of weakly closed convex hulls of bilattices in terms of the convergence of the corresponding supports, and establish a lower-semicontinuity result for the map sending a support to the corresponding masa-bimodule.
Resumo:
In this work we characterise the C*-algebras $\mathcal{A}$ generated by projections with the property that every pair of projections in $\mathcal{A}$ has positive angle, as certain extensions of abelian algebras by algebras of compact operators. We show that this property is equivalent to a lattice theoretic property of projections and also to the property that the set of finite dimensional *-subalgebras of $\mathcal{A}$ is directed.
Resumo:
Let $G$ be a locally compact $\sigma$-compact group. Motivated by an earlier notion for discrete groups due to Effros and Ruan, we introduce the multidimensional Fourier algebra $A^n(G)$ of $G$. We characterise the completely bounded multidimensional multipliers associated with $A^n(G)$ in several equivalent ways. In particular, we establish a completely isometric embedding of the space of all $n$-dimensional completely bounded multipliers into the space of all Schur multipliers on $G^{n+1}$ with respect to the (left) Haar measure. We show that in the case $G$ is amenable the space of completely bounded multidimensional multipliers coincides with the multidimensional Fourier-Stieltjes algebra of $G$ introduced by Ylinen. We extend some well-known results for abelian groups to the multidimensional setting.
Resumo:
We investigate the simplicial cohomology of certain Banach operator algebras. The two main examples considered are the Banach algebra of all bounded operators on a Banach space and its ideal of approximable operators. Sufficient conditions will be given forcing Banach algebras of this kind to be simplicially trivial.
Resumo:
We prove that unital surjective spectral isometries on certain non-simple unital C*-algebras are Jordan isomorphisms. Along the way, we establish several general facts in the setting of semisimple Banach algebras.
Resumo:
We introduce the notion of a (noncommutative) C *-Segal algebra as a Banach algebra (A, {norm of matrix}{dot operator}{norm of matrix} A) which is a dense ideal in a C *-algebra (C, {norm of matrix}{dot operator}{norm of matrix} C), where {norm of matrix}{dot operator}{norm of matrix} A is strictly stronger than {norm of matrix}{dot operator}{norm of matrix} C onA. Several basic properties are investigated and, with the aid of the theory of multiplier modules, the structure of C *-Segal algebras with order unit is determined.