937 resultados para Yerba mate pest
Resumo:
The Beyond Compliance project, which began in July 2011 with funding from the Standards and Trade Development Facility for 2 years, aims to enhance competency and confidence in the South East Asian sub-region by applying a Systems Approach for pest risk management. The Systems Approach involves the use of integrated measures, at least two of which are independent, that cumulatively reduce the risk of introducing exotic pests through trade. Although useful in circumstances where single measures are inappropriate or unavailable, the Systems Approach is inherently more complicated than single-measure approaches, which may inhibit its uptake. The project methodology is to take prototype decision-support tools, such as Control Point-Bayesian Networks (CP-BN), developed in recent plant health initiatives in other regions, including the European PRATIQUE project, and to refine them within this sub-regional context. Case studies of high-priority potential agricultural trade will be conducted by National Plant Protection Organizations of participating South East Asian countries in trials of the tools, before further modifications. Longer term outcomes may include: more robust pest risk management in the region (for exports and imports); greater inclusion of stakeholders in development of pest risk management plans; increased confidence in trade negotiations; and new opportunities for trade.
Resumo:
This project elucidated functional role of phytochemicals used in the management of pest fruit flies. Comparative behavioural, physiological and genomic approaches revealed that phytochemicals are mediating reproductive fitness by changing pheromonal compound males release and by making them physiologically more active. The possible mechanistic functions are that the phytochemicals act as a pheromone booster and as an energy supplement.
Resumo:
Occupational segregation is a major source of labour market rigidity and economic inefficiency due to a waste of human resources. Organisations are repeatedly recognised as gendered constructs exhibiting sustained work segregation, income and status inequality, as well as cultural and individual images of gender, and these are perpetuated through their processes, practices and pressures (Acker, 1990). A large percentage of Australia’s workforce is now employed in project-based or project-oriented organisations, leading to the claim that Australia is a project-based economy. For a continued strong performance in this economy, organisations that employ project personnel will need to consider how they address inclusivity and equality in diversity in project based temporary organisations to ensure the supply of high quality project professionals into the future. This paper investigates the inclusion processes experienced and exercised by men and women working in temporary organisations in project situations through a review of reports on the inclusion processes experienced by 60 project managers and project workers in three project based industries in Australia. Results indicate that temporary organisations are not implementing equality and diversity management strategies at the macro level and project workers are accepting this lack of recognition. However inclusivity and equality at the micro level of the team is seen as vital.
Resumo:
Bactrocera papayae Drew & Hancock, Bactrocera philippinensis Drew & Hancock, Bactrocera carambolae Drew & Hancock, and Bactrocera invadens Drew, Tsuruta & White are four horticultural pest tephritid fruit fly species that are highly similar, morphologically and genetically, to the destructive pest, the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). This similarity has rendered the discovery of reliable diagnostic characters problematic, which, in view of the economic importance of these taxa and the international trade implications, has resulted in ongoing difficulties for many areas of plant protection and food security. Consequently, a major international collaborative and integrated multidisciplinary research effort was initiated in 2009 to build upon existing literature with the specific aim of resolving biological species limits among B. papayae, B. philippinensis, B. carambolae, B. invadens and B. dorsalis to overcome constraints to pest management and international trade. Bactrocera philippinensis has recently been synonymized with B. papayae as a result of this initiative and this review corroborates that finding; however, the other names remain in use. While consistent characters have been found to reliably distinguish B. carambolae from B. dorsalis, B. invadens and B. papayae, no such characters have been found to differentiate the latter three putative species. We conclude that B. carambolae is a valid species and that the remaining taxa, B. dorsalis, B. invadens and B. papayae, represent the same species. Thus, we consider B. dorsalis (Hendel) as the senior synonym of B. papayae Drew and Hancock syn.n. and B. invadens Drew, Tsuruta & White syn.n. A redescription of B. dorsalis is provided. Given the agricultural importance of B. dorsalis, this taxonomic decision will have significant global plant biosecurity implications, affecting pest management, quarantine, international trade, postharvest treatment and basic research. Throughout the paper, we emphasize the value of independent and multidisciplinary tools in delimiting species, particularly in complicated cases involving morphologically cryptic taxa.
Resumo:
This report describes the Year Two/Campaign Two processes, and articulates findings from the major project components designed to address the challenges noted above (see Figure 1). Three major components comprise the Safe and Well Online project: 1) A participatory design (PD) process involving young people and sector partners (UWS) for; 2) campaign development (Zuni & Digital Arts Network); and 3) a cohort study (University of South Australia) to evaluate campaign effectiveness and attitude and behaviour change. Each sub-study comprehensively considered the ethical requirements of conducting online research with minors. The theoretical and methodological framework for measuring campaign engagement and efficacy (Sub-studies 3, 4 and 5) drew on the Model of Goal Directed Behaviour (MGB) (Perugini & Bagozzi 2001) and Nudge Theory (Thaler & Sunstein, 2008). This report extends the findings and conclusions of the Year One Pilot Study ‘‘Keep it Tame’’ (Spears et.al, 2015), and details the development and evaluation of the second of four Safe and Well Online Campaigns—‘‘Appreciate A Mate’: Helping others feel good about themselves’.
Resumo:
The genus Colasposorna Laporte is shown to be represented in Australia by a single species, C. sellaturn Baly (= C. barbaturn Harold, syn. conf.; = C. regulare Jacoby, syn. nov.). The adult and larva are described and lectotypes designated for C. sellaturn and C. regulare. Colasposoma sellaturn is recorded from the Northern Territory, northern Queensland and New Guinea. This species is a pest of Ipomoea batatas (sweet potato) in northern Queensland, where the adults damage stems and foliage and larvae may cause considerable damage to tubers. Its pest status is assessed and control measures discussed.
Resumo:
In recent years the cultivation of ornamental palms (Arecaceae) has increased markedly in northern Queensland. Consequently, several insects have become important pests, particularly Rhabdoscelus obscurus (Boisduval), the cane weevil borer. The larvae of this beetle feed on various species of palms, making the plants unsaleable. Death or lodging of the trees may also result. This paper documents its pest status, derived from information in the literature and from consultation with local growers.
Resumo:
A large weevil was found infesting macadamia nuts on the Atherton Tableland during the 1994/95 season. It was unrepresented in various Australian insect collections but thought to belong to the genus Sigastus. This paper reports some preliminary studies on its biology, pest status and control. From 4-6 weeks after first nut-set adult females commence laying single eggs through the husk, after first scarifying an oviposition site. The nut stalk is then cleaved leading to rapid abscission. Nuts were generally attacked up until hard shell formation. Weevil larvae consumed whole kernels, with % survival higher and larval duration shorter in larger nuts. Infestation rates increased with increasing nut diameter, reaching 72.8% of fallen nuts by mid-October. A crop loss of 30% could be attributed to weevils in an unsprayed orchard. However, adult weevils are very susceptible to both carbaryl and methidathion sprays. In addition, exposure of infested nuts to full sunlight over several weeks kills 100% of larvae. Crops should be surveyed for weevil damage from the 5-10 mm diameter stage until mid-December. Methidathion used as an initial spray for fruitspotting bugs should provide control. Organic growers are advised to sweep infested nuts into mown interrows where solarisation will kill larvae.
Resumo:
Creontiades spp. (Hemiptera: Miridae) are sucking pests that attack buds, flowers and young pods in mungbeans, Vigna radiata (L.), causing these structures subsequently to abort. If left uncontrolled, mirids can cause 25-50% yield loss. Traditional industry practice has involved prophylactic applications of dimethoate to control mirids at budding and again a week later. The present trial was initiated to highlight the dangers of such a practice, in particular the risk of a subsequent Helicoverpa spp. lepidopteran pest outbreak. A single application of dimethoate halved the population of important natural enemies of Helicoverpa spp., and caused an above-threshold outbreak of Helicoverpa spp. within 11 days. This shows that even a moderate (e.g. 50%) reduction in natural enemies may be sufficient to increase Helicoverpa spp. populations in mungbeans. As a result, prophylactic sprays should not be used for the control of mirids in mungbeans, and dimethoate should be applied only when mirids are above the economic threshold. Indoxacarb was also tested to establish its effect on Helicoverpa spp., mirids and natural enemies. Indoxacarb showed potential for Helicoverpa spp. control and suppression of mirids and had little impact on natural enemies.
Resumo:
Helicoverpa spp. and mirids, Creontiades spp., have been difficult to control biologically in cotton due to their unpredictable temporal abundance combined with a cropping environment often made hostile by frequent usage of broad spectrum insecticides. To address this problem, a range of new generation insecticides registered for use in cotton were tested for compatibility with the assassin bug, Pristhesancus plagipennis (Walker), a potential biological control agent for Helicoverpa spp. and Creontiades spp. Indoxacarb, pyriproxifen, buprofezin, spinosad and fipronil were found to be of low to moderate toxicity on P. plagipennis whilst emamectin benzoate, abamectin, diafenthiuron, imidacloprid and omethaote were moderate to highly toxic. Inundative releases of P. plagipennis integrated with insecticides identified as being of low toxicity were then tested and compared with treatments of P. plagipennis and the compatible insecticides used alone, conventionally sprayed usage practice and an untreated control during two field experiments in cotton. The biological control provided by P. plagipennis nymphs when combined with compatible insecticides provided significant (P<0.001) reductions in Helicoverpa and Creontiades spp. on cotton and provided equivalent yields to conventionally sprayed cotton with half of the synthetic insecticide input. Despite this, the utilization of P. plagipennis in cotton as part of an integrated pest management programme remains unlikely due to high inundative release costs relative to other control technologies such as insecticides and transgenic (Bt) cotton varieties.
Resumo:
Two species of root-lesion nematode (predominantly Pratylenchus thornei but also P. neglectus) are widespread pathogens of wheat and other crops in Australia's northern grain belt, a subtropical region with deep, fertile clay soils and a summer-dominant rainfall pattern. Losses in grain yield from P. thornei can be as high as 70% for intolerant wheat cultivars. This review focuses on research which has led to the development of effective integrated management programs for these nematodes. It highlights the importance of correct identification in managing Pratylenchus species, reviews the plant breeding work done in developing tolerant and resistant cultivars, outlines the methods used to screen for tolerance and resistance, and discusses how planned crop sequencing with tolerant and partially resistant wheat cultivars, together with crops such as sorghum, sunflower, millets and canaryseed, can be used to reduce nematode populations and limit crop damage. The declining levels of soil organic matter in cropped soils are also discussed with reference to their effect on soil health and biological suppression of root-lesion nematodes.
Resumo:
The effectiveness of any trapping system is highly dependent on the ability to accurately identify the specimens collected. For many fruit fly species, accurate identification (= diagnostics) using morphological or molecular techniques is relatively straightforward and poses few technical challenges. However, nearly all genera of pest tephritids also contain groups of species where single, stand-alone tools are not sufficient for accurate identification: such groups include the Bactrocera dorsalis complex, the Anastrepha fraterculus complex and the Ceratitis FAR complex. Misidentification of high-impact species from such groups can have dramatic consequences and negate the benefits of an otherwise effective trapping program. To help prevent such problems, this chapter defines what is meant by a species complex and describes in detail how the correct identification of species within a complex requires the use of an integrative taxonomic approach. Integrative taxonomy uses multiple, independent lines of evidence to delimit species boundaries, and the underpinnings of this approach from both the theoretical speciation literature and the systematics/taxonomy literature are described. The strength of the integrative approach lies in the explicit testing of hypotheses and the use of multiple, independent species delimitation tools. A case is made for a core set of species delimitation tools (pre- and post-zygotic compatibility tests, multi-locus phylogenetic analysis, chemoecological studies, and morphometric and geometric morphometric analyses) to be adopted as standards by tephritologists aiming to resolve economically important species complexes. In discussing the integrative approach, emphasis is placed on the subtle but important differences between integrative and iterative taxonomy. The chapter finishes with a case study that illustrates how iterative taxonomy applied to the B. dorsalis species complex led to incorrect taxonomic conclusions, which has had major implications for quarantine, trade, and horticultural pest management. In contrast, an integrative approach to the problem has resolved species limits in this taxonomically difficult group, meaning that robust diagnostics are now available.
Resumo:
Prior to the 1980s, arthropod pest control in Queensland strawberries was based entirely on calendar sprays of insecticides (mainly endosulfan, triclorfon, dimethoate and carbaryl) and a miticide (dicofol). These chemicals were applied frequently and spider mite outbreaks occurred every season. The concept of integrated pest management (IPM) had not been introduced to growers, and the suggestion that an alternative to the standard chemical pest control recipe might be available, was ignored. Circumstances changed when the predatory mite, Phytoseiulus persimilis Athios-Henriot, became available commercially in Australia, providing the opportunity to manage spider mites, the major pests of strawberries, with an effective biological agent. Trials conducted on commercial farms in the early 1980s indicated that a revolution in strawberry pest management was at hand, but the industry generally remained sceptical and afraid to adopt the new strategy. Lessons are learnt from disasters and the consequent monetary loss that ensues, and in 1993, such an event relating to ineffective spider mite control, spawned the revolution we had to have. Farm-oriented research and evolving grower perspectives have resulted in the acceptance of biological control of spider mites using Phytoseiulus persimilis and the 'pest in first' technique, and it now forms the basis of an IPM system that is used on more than 80% of the Queensland strawberry crop.
Resumo:
The authors overview integrated pest management (IPM) in grain crops in north-eastern Australia, which is defined as the area north of latitude 32°S. Major grain crops in this region include the coarse grains (winter and summer cereals), oilseeds and pulses. IPM in these systems is complicated by the diversity of crops, pests, market requirements and cropping environments. In general, the pulse crops are at greatest risk, followed by oilseeds and then by cereal grains. Insecticides remain a key grain pest management tool in north-eastern Australia. IPM in grain crops has benefited considerably through the increased adoption of new, more selective insecticides and biopesticides for many caterpillar pests, in particular Helicoverpa spp. and loopers, and the identification of pest-crop scenarios where spraying is unnecessary (e.g. for most Creontiades spp. populations in soybeans). This has favoured the conservation of natural enemies in north-eastern Australia grain crops, and has arguably assisted in the management of silverleaf whitefly in soybeans in coastal Queensland. However, control of sucking pests and podborers such as Maruca vitrata remains a major challenge for IPM in summer pulses. Because these crops have very low pest-damage tolerances and thresholds, intervention with disruptive insecticides is frequently required, particularly during podfill. The threat posed by silverleaf whitefly demands ongoing multi-pest IPM research, development and extension as this pest can flare under favourable seasonal conditions, especially where disruptive insecticides are used injudiciously. The strong links between researchers and industry have facilitated the adoption of IPM practices in north-eastern Australia and augers well for future pest challenges and for the development and promotion of new and improved IPM tactics.
Resumo:
There are two major pests of sorghum in Australia, the sorghum midge, Stenodiplosis sorghicola (Coquillett), and the corn earworm, Helicoverpa armigera (Hübner). During the past 10 years the management of these pests has undergone a revolution, due principally to the development of sorghum hybrids with resistance to sorghum midge. Also contributing has been the adoption of a nucleopolyhedrovirus for the management of corn earworm. The practical application of these developments has led to a massive reduction in the use of synthetic insecticides for the management of major pests of sorghum in Australia. These changes have produced immediate economic, environmental and social benefits. Other flow-on benefits include providing flexibility in planting times, the maintenance of beneficial arthropods and utilisation of sorghum as a beneficial arthropod nursery, a reduction in midge populations and a reduction in insecticide resistance development in corn earworm. Future developments in sorghum pest management are discussed.