979 resultados para XYZ compliant parallel mechanism
Resumo:
The focus of this paper is on designing useful compliant micro-mechanisms of high-aspect-ratio which can be microfabricated by the cost-effective wet etching of (110) orientation silicon (Si) wafers. Wet etching of (110) Si imposes constraints on the geometry of the realized mechanisms because it allows only etch-through in the form of slots parallel to the wafer's flat with a certain minimum length. In this paper, we incorporate this constraint in the topology optimization and obtain compliant designs that meet the specifications on the desired motion for given input forces. Using this design technique and wet etching, we show that we can realize high-aspect-ratio compliant micro-mechanisms. For a (110) Si wafer of 250 µm thickness, the minimum length of the etch opening to get a slot is found to be 866 µm. The minimum achievable width of the slot is limited by the resolution of the lithography process and this can be a very small value. This is studied by conducting trials with different mask layouts on a (110) Si wafer. These constraints are taken care of by using a suitable design parameterization rather than by imposing the constraints explicitly. Topology optimization, as is well known, gives designs using only the essential design specifications. In this work, we show that our technique also gives manufacturable mechanism designs along with lithography mask layouts. Some designs obtained are transferred to lithography masks and mechanisms are fabricated on (110) Si wafers.
Resumo:
Many common activities, like reading, scanning scenes, or searching for an inconspicuous item in a cluttered environment, entail serial movements of the eyes that shift the gaze from one object to another. Previous studies have shown that the primate brain is capable of programming sequential saccadic eye movements in parallel. Given that the onset of saccades directed to a target are unpredictable in individual trials, what prevents a saccade during parallel programming from being executed in the direction of the second target before execution of another saccade in the direction of the first target remains unclear. Using a computational model, here we demonstrate that sequential saccades inhibit each other and share the brain's limited processing resources (capacity) so that the planning of a saccade in the direction of the first target always finishes first. In this framework, the latency of a saccade increases linearly with the fraction of capacity allocated to the other saccade in the sequence, and exponentially with the duration of capacity sharing. Our study establishes a link between the dual-task paradigm and the ramp-to-threshold model of response time to identify a physiologically viable mechanism that preserves the serial order of saccades without compromising the speed of performance.
Resumo:
A spring-mass-lever (SML) model is introduced in this paper for a single-input-single-output compliant mechanism to capture its static and dynamic behavior. The SML model is a reduced-order model, and its five parameters provide physical insight and quantify the stiffness and inertia(1) at the input and output ports as well as the transformation of force and displacement between the input and output. The model parameters can be determined with reasonable accuracy without performing dynamic or modal analysis. The paper describes two uses of the SML model: computationally efficient analysis of a system of which the compliant mechanism is a part; and design of compliant mechanisms for the given user-specifications. During design, the SML model enables determining the feasible parameter space of user-specified requirements, assessing the suitability of a compliant mechanism to meet the user-specifications and also selecting and/or re-designing compliant mechanisms from an existing database. Manufacturing constraints, material choice, and other practical considerations are incorporated into this methodology. A micromachined accelerometer and a valve mechanism are used as examples to show the effectiveness of the SML model in analysis and design. (C) 2012 Published by Elsevier Ltd.
Resumo:
The focus of this paper is on the practical aspects of design, prototyping, and testing of a compact, compliant external pipe-crawling robot that can inspect a closely spaced bundle of pipes in hazardous environments and areas that are inaccessible to humans. The robot consists of two radially deployable compliant ring actuators that are attached to each other along the longitudinal axis of the pipe by a bidirectional linear actuator. The robot imitates the motion of an inchworm. The novel aspect of the compliant ring actuator is a spring-steel compliant mechanism that converts circumferential motion to radial motion of its multiple gripping pads. Circumferential motion to ring actuators is provided by two shape memory alloy (SMA) wires that are guided by insulating rollers. The design of the compliant mechanism is derived from a radially deployable mechanism. A unique feature of the design is that the compliant mechanism provides the necessary kinematic function within the limited annular space around the pipe and serves as the bias spring for the SMA wires. The robot has a control circuit that sequentially activates the SMA wires and the linear actuator; it also controls the crawling speed. The robot has been fabricated, tested, and automated. Its crawling speed is about 45 mm/min, and the weight is about 150 g. It fits within an annular space of a radial span of 15 mm to crawl on a pipe of 60-mm outer diameter.
Resumo:
This paper presents a study of the nature of the degrees-of-freedom of spatial manipulators based on the concept of partition of degrees-of-freedom. In particular, the partitioning of degrees-of-freedom is studied in five lower-mobility spatial parallel manipulators possessing different combinations of degrees-of-freedom. An extension of the existing theory is introduced so as to analyse the nature of the gained degree(s)-of-freedom at a gain-type singularity. The gain of one- and two-degrees-of-freedom is analysed in several well-studied, as well as newly developed manipulators. The formulations also present a basis for the analysis of the velocity kinematics of manipulators of any architecture. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we present the design and development of a portable, hand-operated composite compliant mechanism for estimating the failure-load of cm-sized stiff objects whose stiffness is of the order of 10 s of kN/m. The motivation for the design comes from the need to estimate the failure-load of mesoscale cemented sand specimens in situ, which is not possible with traditional devices used for large specimens or very small specimens. The composite compliant device, developed in this work, consists of two compliant mechanisms: a force-amplifying compliant mechanism (FaCM) to amplify sufficiently the force exerted by hand in order to break the specimen and a displacement-amplifying compliant mechanism (DaCM) to enable measurement of the force using a proximity sensor. The two mechanisms are designed using the selection-maps technique to amplify the force up to 100N by about a factor of 3 and measure the force with a resolution of 15 mN. The composite device, made using a FaCM, a DaCM, and a Hall effect-based proximity sensor, was tested on mesoscale cemented sand specimens that were 10mm in diameter and 20mm in length. The results are compared with those of a large commercial instrument. Through the experiments, it was observed that the failure-load of the cemented sand specimens varied from 0.95N to 24.33 N, depending on the percentage of cementation and curing period. The estimation of the failure-load using the compliant device was found to be within 1.7% of the measurements obtained using the commercial instrument and thus validating the design. The details of the design, prototyping, specimen preparation, testing, and the results comprise the paper.
Resumo:
Biomechanical assays offer a good alternative to biochemical assays in diagnosing disease states and assessing the efficacy of drugs. In view of this, we have developed a miniature compliant tool to estimate the bulk stiffness of cells, particularly MCF-7 (Michigan Cancer Foundation) cells whose diameter is 12-15 mu m in suspension. The compliant tool comprises a gripper and a displacement-amplifying compliant mechanism (DaCM), where the former helps in grasping the cell and the latter enables vision-based force-sensing. A DaCM is necessary because the microscope's field of view at the required magnification is not sufficient to simultaneously observe the cell and the movement of a point on the gripper, in order to estimate the force. Therefore, a DaCMis strategically embedded within an existing gripper design leading to a composite compliant mechanism. The DaCM is designed using the kinetoelastostatic map technique to achieve a 42 nN resolution of the force. The gripper, microfabricated with SU-8 using photolithography, is within the footprint of about 10 mm by 10 mm with the smallest feature size of about 5 mu m. The experiments with MCF-7 cells suggest that the bulk stiffness of these is in the range of 8090 mN/m. The details of design, prototyping and testing comprise the paper. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
How do we assess the capability of a compliant mechanism of given topology and shape? The kinetoelastostatic maps proposed in this paper help answer this question. These maps are drawn in 2D using two non-dimensional quantities, one capturing the nonlinear static response and the other the geometry, material, and applied forces. Geometrically nonlinear finite element analysis is used to create the maps for compliant mechanisms consisting of slender beams. In addition to the topology and shape, the overall proportions and the proportions of the cross-sections of the beam segments are kept fixed for a map. The finite region of the map is parameterized using a non-dimensional quantity defined as the slenderness ratio. The shape and size of the map and the parameterized curves inside it indicate the complete kinetoelastostatic capability of the corresponding compliant mechanism of given topology, shape, and fixed proportions. Static responses considered in this paper include input/output displacement, geometric amplification, mechanical advantage, maximum stress, etc. The maps can be used to compare mechanisms, to choose a suitable mechanism for an application, or re-design as may be needed. The usefulness of the non-dimensional maps is presented with multiple applications of different variety. Non-dimensional portrayal of snap-through mechanisms is one such example. The effect of the shape of the cross-section of the beam segments and the role of different segments in the mechanism as well as extension to 3D compliant mechanisms, the cases of multiple inputs and outputs, and moment loads are also explained. The effects of disproportionate changes on the maps are also analyzed.
Resumo:
It is suggested that the oscillation of thermocapillary convection may be excited by the buoyancy instability. By means of numerical simulation of the finite-element method, the temperature distributions in the liquid bridge are qualitatively analyzed. The temperature gradient in a certain flow region of liquid bridge may turn to be parallel to the direction of gravity when the temperature difference △T between two boundary rods of liquid bridge is larger than the critical value. The buoyancy instability may be excited, and then the thermocapillary oscillatory convection appears, as the temperature difference increases further. The distribution of the critical Marangoni number in the micro-gravity environment is derived from the data on the ground experiments. The results show that the onset of thermocapillary oscillatory convection is delayed in the case of smaller typical scale of liquid bridge and lower gravity environment.
Resumo:
Mannose receptor (MR) is widely expressed on macrophages, immature dendritic cells, and a variety of epithelial and endothelial cells. It is a 180 kD type I transmembrane receptor whose extracellular region consists of three parts: the amino-terminal cysteine-rich domain (Cys-MR); a fibronectin type II-like domain; and a series of eight tandem C-type lectin carbohydrate recognition domains (CRDs). Two portions of MR have distinct carbohydrate recognition properties: Cys-MR recognizes sulfated carbohydrates and the tandem CRD region binds terminal mannose, fucose, and N-acetyl-glucosamine (GlcNAc). The dual carbohydrate binding specificity allows MR to interact with sulfated and nonsulfated polysaccharide chains, and thereby facilitating the involvement of MR in immunological and physiological processes. The immunological functions of MR include antigen capturing (through binding non-sulfated carbohydrates) and antigen targeting (through binding sulfated carbohydrates), and the physiological roles include rapid clearance of circulatory luteinizing hormone (LH), which bears polysaccharide chains terminating with sulfated and non-sulfated carbohydrates.
We have crystallized and determined the X-ray structures of unliganded Cys-MR (2.0 Å) and Cys-MR complexed with different ligands, including Hepes (1.7 Å), 4SO_4-N-Acetylgalactosamine (4SO_4-GalNAc; 2.2 Å), 3SO_4-Lewis^x (2.2 Å), 3S04-Lewis^a (1.9 Å), and 6SO_4-GalNAc (2.5 Å). The overall structure of Cys-MR consists of 12 anti-parallel β-strands arranged in three lobes with approximate three fold internal symmetry. The structure contains three disulfide bonds, formed by the six cysteines in the Cys-MR sequence. The ligand-binding site is located in a neutral pocket within the third lobe, in which the sulfate group of ligand is buried. Our results show that optimal binding is achieved by a carbohydrate ligand with a sulfate group that anchors the ligand by forming numerous hydrogen bonds and a sugar ring that makes ring-stacking interactions with Trpll7 of CysMR. Using a fluorescence-based assay, we characterized the binding affinities between CysMR and its ligands, and rationalized the derived affinities based upon the crystal structures. These studies reveal the mechanism of sulfated carbohydrate recognition by Cys-MR and facilitate our understanding of the role of Cys-MR in MR recognition of its ligands.
Resumo:
Thin film bulk acoustic wave resonator (FBAR) devices supporting simultaneously multiple resonance modes have been designed for gravimetric sensing. The mechanism for dual-mode generation within a single device has been discussed, and theoretical calculations based on finite element analysis allowed the fabrication of FBARs whose resonance modes have opposite reactions to temperature changes; one of the modes exhibiting a positive frequency shift for a rise of temperature whilst the other mode exhibits a negative shift. Both modes exhibit negative frequency shift for a mass load and hence by monitoring simultaneously both modes it is possible to distinguish whether a change in the resonance frequency is due to a mass load or temperature variation (or a combination of both), avoiding false positive/negative responses in gravimetric sensing without the need of additional reference devices or complex electronics.
Resumo:
Thin film bulk acoustic wave resonator (FBAR) devices supporting simultaneously multiple resonance modes have been designed for gravimetric sensing. The mechanism for dual-mode generation within a single device has been discussed, and theoretical calculations based on finite element analysis allowed the fabrication of FBARs whose resonance modes have opposite reactions to temperature changes; one of the modes exhibiting a positive frequency shift for a rise of temperature whilst the other mode exhibits a negative shift. Both modes exhibit negative frequency shift for a mass load and hence by monitoring simultaneously both modes it is possible to distinguish whether a change in the resonance frequency is due to a mass load or temperature variation (or a combination of both), avoiding false positive/negative responses in gravimetric sensing without the need of additional reference devices or complex electronics. © 2012 Elsevier B.V.
Resumo:
Guest host polymer thin films of polymethyl methacrylate (PMMA) incorporated with (4'-nitrobenzene)-3-azo-9-ethylcarbazole (NAEC) were fabricated by spin coating and then poled by the method of corona-onset poling at elevated temperature. The absorption mechanism of the polymeric film, which is very important for the optical transmission losses and directly relates to the orientation of chromophore NAEC in polymer PMMA, was investigated in detail. From the UV-visible absorption spectra for NAEC/PMMA film before and after being poled, we determined the change of absorption coefficient kappa with the wavelength and approximately calculated the maximum absorption A(parallel tomax) as 3.46 for incident light propagating parallel through the film, i.e. the ordinary polarized light, which cannot be directly measured in the spectro photometer. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
研究全地形移动机器人在不平坦地形中轮-地几何接触角的实时估计问题.本文以带有被动柔顺机构的六轮全地形移动机器人为对象,抛弃轮-地接触点位于车轮支撑臂延长线上这一假设,通过定义轮-地几何接触角δ来反映轮-地接触点在轮缘上位置的变化和地形不平坦给机器人运动带来的影响,将机器人看成是一个串-并联多刚体系统,基于速度闭链理论建立考虑地形不平坦和车轮滑移的机器人运动学模型,并针对轮-地几何接触角δ难以直接测量的问题,提出一种基于模型的卡尔曼滤波实时估计方法.利用卡尔曼滤波对机器人内部传感器的测量值进行噪声处理,基于机器人整体运动学模型对各个轮-地几何接触角进行实时估计,物理实验数据的处理结果验证了本文方法的有效性,从而为机器人运动学的精确计算和高质量的导航控制奠定了基础.
Resumo:
This report describes Processor Coupling, a mechanism for controlling multiple ALUs on a single integrated circuit to exploit both instruction-level and inter-thread parallelism. A compiler statically schedules individual threads to discover available intra-thread instruction-level parallelism. The runtime scheduling mechanism interleaves threads, exploiting inter-thread parallelism to maintain high ALU utilization. ALUs are assigned to threads on a cycle byscycle basis, and several threads can be active concurrently. Simulation results show that Processor Coupling performs well both on single threaded and multi-threaded applications. The experiments address the effects of memory latencies, function unit latencies, and communication bandwidth between function units.