941 resultados para WordNet domains


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that every hyperbolic rigid polynomial domain in C-3 of finite-type, with abelian automorphism group is equivalent to a domain that is balanced with respect to some weight.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a domain Omega in C and an operator T in B-n(Omega), Cowen and Douglas construct a Hermitian holomorphic vector bundle E-T over Omega corresponding to T. The Hermitian holomorphic vector bundle E-T is obtained as a pull-back of the tautological bundle S(n, H) defined over by Gr(n, H) a nondegenerate holomorphic map z bar right arrow ker(T - z), z is an element of Omega. To find the answer to the converse, Cowen and Douglas studied the jet bundle in their foundational paper. The computations in this paper for the curvature of the jet bundle are rather intricate. They have given a set of invariants to determine if two rank n Hermitian holomorphic vector bundle are equivalent. These invariants are complicated and not easy to compute. It is natural to expect that the equivalence of Hermitian holomorphic jet bundles should be easier to characterize. In fact, in the case of the Hermitian holomorphic jet bundle J(k)(L-f), we have shown that the curvature of the line bundle L-f completely determines the class of J(k)(L-f). In case of rank Hermitian holomorphic vector bundle E-f, We have calculated the curvature of jet bundle J(k)(E-f) and also obtained a trace formula for jet bundle J(k)(E-f).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove that a proper holomorphic map between two nonplanar bounded symmetric domains of the same dimension, one of them being irreducible, is a biholomorphism. Our methods allow us to give a single, all-encompassing argument that unifies the various special cases in which this result is known. We discuss an application of these methods to domains having noncompact automorphism groups that are not assumed to act transitively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove two density theorems for quadrature domains in , . It is shown that quadrature domains are dense in the class of all product domains of the form , where is a smoothly bounded domain satisfying Bell's Condition R and is a smoothly bounded domain and also in the class of all smoothly bounded complete Hartogs domains in C-2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Translation initiation in Hepatitis C Virus (HCV) is mediated by Internal Ribosome Entry Site (IRES), which is independent of cap-structure and uses a limited number of canonical initiation factors. During translation initiation IRES-40S complex formation depends on high affinity interaction of IRES with ribosomal proteins. Earlier, it has been shown that ribosomal protein S5 (RPS5) interacts with HCV IRES. Here, we have extensively characterized the HCV IRES-RPS5 interaction and demonstrated its role in IRES function. Computational modelling and RNA-protein interaction studies demonstrated that the beta hairpin structure within RPS5 is critically required for the binding with domains II and IV. Mutations disrupting IRES-RPS5 interaction drastically reduced the 80S complex formation and the corresponding IRES activity. Computational analysis and UV cross-linking experiments using various IRES-mutants revealed interplay between domains II and IV mediated by RPS5. In addition, present study demonstrated that RPS5 interaction is unique to HCV IRES and is not involved in 40S-3 ` UTR interaction. Further, partial silencing of RPS5 resulted in preferential inhibition of HCV RNA translation. However, global translation was marginally affected by partial silencing of RPS5. Taken together, results provide novel molecular insights into IRES-RPS5 interaction and unravel its functional significance in mediating internal initiation of translation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extend a well-known result, about the unit ball, by H. Alexander to a class of balanced domains in . Specifically: we prove that any proper holomorphic self-map of a certain type of balanced, finite-type domain in , is an automorphism. The main novelty of our proof is the use of a recent result of Opshtein on the behaviour of the iterates of holomorphic self-maps of a certain class of domains. We use Opshtein's theorem, together with the tools made available by finiteness of type, to deduce that the aforementioned map is unbranched. The monodromy theorem then delivers the result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a family of domains-which we call the -quotients-associated with an aspect of -synthesis. We show that the natural association that the symmetrized polydisc has with the corresponding spectral unit ball is also exhibited by the -quotient and its associated unit `` -ball''. Here, is the structured singular value for the case Specifically: we show that, for such an E, the Nevanlinna-Pick interpolation problem with matricial data in a unit `` -ball'', and in general position in a precise sense, is equivalent to a Nevanlinna-Pick interpolation problem for the associated -quotient. Along the way, we present some characterizations for the -quotients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In the post-genomic era where sequences are being determined at a rapid rate, we are highly reliant on computational methods for their tentative biochemical characterization. The Pfam database currently contains 3,786 families corresponding to ``Domains of Unknown Function'' (DUF) or ``Uncharacterized Protein Family'' (UPF), of which 3,087 families have no reported three-dimensional structure, constituting almost one-fourth of the known protein families in search for both structure and function. Results: We applied a `computational structural genomics' approach using five state-of-the-art remote similarity detection methods to detect the relationship between uncharacterized DUFs and domain families of known structures. The association with a structural domain family could serve as a start point in elucidating the function of a DUF. Amongst these five methods, searches in SCOP-NrichD database have been applied for the first time. Predictions were classified into high, medium and low-confidence based on the consensus of results from various approaches and also annotated with enzyme and Gene ontology terms. 614 uncharacterized DUFs could be associated with a known structural domain, of which high confidence predictions, involving at least four methods, were made for 54 families. These structure-function relationships for the 614 DUF families can be accessed on-line at http://proline.biochem.iisc.ernet.in/RHD_DUFS/. For potential enzymes in this set, we assessed their compatibility with the associated fold and performed detailed structural and functional annotation by examining alignments and extent of conservation of functional residues. Detailed discussion is provided for interesting assignments for DUF3050, DUF1636, DUF1572, DUF2092 and DUF659. Conclusions: This study provides insights into the structure and potential function for nearly 20 % of the DUFs. Use of different computational approaches enables us to reliably recognize distant relationships, especially when they converge to a common assignment because the methods are often complementary. We observe that while pointers to the structural domain can offer the right clues to the function of a protein, recognition of its precise functional role is still `non-trivial' with many DUF domains conserving only some of the critical residues. It is not clear whether these are functional vestiges or instances involving alternate substrates and interacting partners. Reviewers: This article was reviewed by Drs Eugene Koonin, Frank Eisenhaber and Srikrishna Subramanian.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA processing protein A (DprA) plays a crucial role in the process of natural transformation. This is accomplished through binding and subsequent protection of incoming foreign DNA during the process of internalization. DprA along with Single stranded DNA binding protein A (SsbA) acts as an accessory factor for RecA mediated DNA strand exchange. H. pylori DprA (HpDprA) is divided into an N-terminal domain and a C-terminal domain. In the present study, individual domains of HpDprA have been characterized for their ability to bind single stranded (ssDNA) and double stranded DNA (dsDNA). Oligomeric studies revealed that HpDprA possesses two sites for dimerization which enables HpDprA to form large and tightly packed complexes with ss and dsDNA. While the N-terminal domain was found to be sufficient for binding with ss or ds DNA, C-terminal domain has an important role in the assembly of poly-nucleoprotein complex. Using site directed mutagenesis approach, we show that a pocket comprising positively charged amino acids in the N-terminal domain has an important role in the binding of ss and dsDNA. Together, a functional cross talk between the two domains of HpDprA facilitating the binding and formation of higher order complex with DNA is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-stranded DNA binding protein (Ssb) of Deinococcus radiodurans comprises N- and C-terminal oligonucleotide/oligosaccharide binding (OB) folds connected by a beta hairpin connector. To assign functional roles to the individual OB folds, we generated three Ssb variants: Ssb(N) (N-terminal without connector), Ssb(NC) (N-terminal with connector) and Ssb(C) (C-terminal), each harboring one OB fold. Both Ssb(N) and Ssb(NC) displayed weak single-stranded DNA (ssDNA) binding activity, compared to the full-length Ssb (Ssb(FL)). The level of ssDNA binding activity displayed by SsbC was intermediate between Ssb(FL) and Ssb(N). Ssb(C) and Ssb(FL) predominantly existed as homo-dimers while Ssb(NC)/Ssb(N) formed different oligomeric forms. In vitro, Ssb(NC) or Ssb(N) formed a binary complex with Ssb(C) that displayed enhanced ssDNA binding activity. Unlike Ssb(FL), Ssb variants were able to differentially modulate topoisomerase-I activity, but failed to stimulate Deinococcal RecA-promoted DNA strand exchange. The results suggest that the C-terminal OB fold is primarily responsible for ssDNA binding. The N-terminal OB fold binds weakly to ssDNA but is involved in multimerization. (C) 2015 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. This is an open access article under the CC BY-NC-ND license.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LysM domains have been recognized in bacteria and eukaryotes as carbohydrate-binding protein modules, but the mechanism of their binding to chitooligosaccharides has been underexplored. Binding of a Mycobacterium smegmatis protein containing a lectin (MSL) and one LysM domain to chitooligosaccharides has been studied using isothermal titration calorimetry and fluorescence titration that demonstrate the presence of two binding sites of nonidentical affinities per dimeric MSL-LysM molecule. The affinity of the molecule for chitooligosaccharides correlates with the length of the carbohydrate chain. Its binding to chitooligosaccharides is characterized by negative cooperativity in the interactions of the two domains. Apparently, the flexibility of the long linker that connects the LysM and MSL domains plays a facilitating role in this recognition. The LysM domain in the MSL-LysM molecule, like other bacterial domains but unlike plant LysM domains, recognizes equally well peptidoglycan fragments as well as chitin polymers. Interestingly, in the case presented here, two LysM domains are enough for binding to peptidoglycan in contrast to the three reportedly required by the LysM domains of Bacillus subtilis and Lactococcus lactis. Also, the affinity of the MSL-LysM molecule for chitooligosaccharides is higher than that of LysM-chitooligosaccharide interactions reported so far.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Helicobacter pylori MutS2 (HpMutS2), an inhibitor of recombination during transformation is a non-specific nuclease with two catalytic sites, both of which are essential for its anti-recombinase activity. Although HpMutS2 belongs to a highly conserved family of ABC transporter ATPases, the role of its ATP binding and hydrolysis activities remains elusive. Results: To explore the putative role of ATP binding and hydrolysis activities of HpMutS2 we specifically generated point mutations in the nucleotide-binding Walker-A (HpMutS2-G338R) and hydrolysis Walker-B (HpMutS2-E413A) domains of the protein. Compared to wild-type protein, HpMutS2-G338R exhibited similar to 2.5-fold lower affinity for both ATP and ADP while ATP hydrolysis was reduced by similar to 3-fold. Nucleotide binding efficiencies of HpMutS2-E413A were not significantly altered; however the ATP hydrolysis was reduced by similar to 10-fold. Although mutations in the Walker-A and Walker-B motifs of HpMutS2 only partially reduced its ability to bind and hydrolyze ATP, we demonstrate that these mutants not only exhibited alterations in the conformation, DNA binding and nuclease activities of the protein but failed to complement the hyper-recombinant phenotype displayed by mutS2-disrupted strain of H. pylori. In addition, we show that the nucleotide cofactor modulates the conformation, DNA binding and nuclease activities of HpMutS2. Conclusions: These data describe a strong crosstalk between the ATPase, DNA binding, and nuclease activities of HpMutS2. Furthermore these data show that both, ATP binding and hydrolysis activities of HpMutS2 are essential for the in vivo anti-recombinase function of the protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human Guanine Monophosphate Synthetase (hGMPS) converts XMP to GMP, and acts as a bifunctional enzyme with N-terminal ``glutaminase'' (GAT) and C-terminal ``synthetase'' domain. The enzyme is identified as a potential target for anticancer and immunosuppressive therapies. GAT domain of enzyme plays central role in metabolism, and contains conserved catalytic residues Cys104, His190, and Glu192. MD simulation studies on GAT domain suggest that position of oxyanion in unliganded conformation is occupied by one conserved water molecule (W1), which also stabilizes that pocket. This position is occupied by a negatively charged atom of the substrate or ligand in ligand bound crystal structures. In fact, MD simulation study of Ser75 to Val indicates that W1 conserved water molecule is stabilized by Ser75, while Thr152, and His190 also act as anchor residues to maintain appropriate architecture of oxyanion pocket through water mediated H-bond interactions. Possibly, four conserved water molecules stabilize oxyanion hole in unliganded state, but they vacate these positions when the enzyme (hGMPS)-substrate complex is formed. Thus this study not only reveals functionally important role of conserved water molecules in GAT domain, but also highlights essential role of other non-catalytic residues such as Ser75 and Thr152 in this enzymatic domain. The results from this computational study could be of interest to experimental community and provide a testable hypothesis for experimental validation. Conserved sites of water molecules near and at oxyanion hole highlight structural importance of water molecules and suggest a rethink of the conventional definition of chemical geometry of inhibitor binding site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known that all the vector bundles of the title can be obtained by holomorphic induction from representations of a certain parabolic group on finite-dimensional inner product spaces. The representations, and the induced bundles, have composition series with irreducible factors. We write down an equivariant constant coefficient differential operator that intertwines the bundle with the direct sum of its irreducible factors. As an application, we show that in the case of the closed unit ball in C-n all homogeneous n-tuples of Cowen-Douglas operators are similar to direct sums of certain basic n-tuples. (c) 2015 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.