992 resultados para Word Processing
Resumo:
To investigate central auditory processing in children with unilateral stroke and to verify whether the hemisphere affected by the lesion influenced auditory competence. 23 children (13 male) between 7 and 16 years old were evaluated through speech-in-noise tests (auditory closure); dichotic digit test and staggered spondaic word test (selective attention); pitch pattern and duration pattern sequence tests (temporal processing) and their results were compared with control children. Auditory competence was established according to the performance in auditory analysis ability. Was verified similar performance between groups in auditory closure ability and pronounced deficits in selective attention and temporal processing abilities. Most children with stroke showed an impaired auditory ability in a moderate degree. Children with stroke showed deficits in auditory processing and the degree of impairment was not related to the hemisphere affected by the lesion.
Resumo:
There is now considerable evidence to suggest that non-demented people with Parkinson's disease (PD) experience difficulties using the morphosyntactic aspects of language. It remains unclear, however, at precisely which point in the processing of morphosyntax, these difficulties emerge. The major objective of the present study was to examine the impact of PD on the processes involved in accessing morphosyntactic information in the lexicon. Nineteen people with PD and 19 matched control subjects participated in the study which employed on-line word recognition tasks to examine morphosyntactic priming for local grammatical dependencies that occur both within (e.g. is going) and across (e.g. she gives) phrasal boundaries (Experiments 1 and 2, respectively). The control group evidenced robust morphosyntactic priming effects that were consistent with the involvement of both pre- (Experiment 1) and post-lexical (Experiment 2) processing routines. Whilst the participants with PD also recorded priming for dependencies within phrasal boundaries (Experiment 1), priming effects were observed over an abnormally brief time course. Further, in contrast to the controls, the PD group failed to record morphosyntactic priming for constructions that crossed phrasal boundaries (Experiment 2). The results demonstrate that attentionally mediated mechanisms operating at both the pre- and post-lexical stages of processing are able to contribute to morphosyntactic priming effects. In addition, the findings support the notion that, whilst people with PD are able to access morphosyntactic information in a normal manner, the time frame in which this information remains available for processing is altered. Deficits may also be experienced at the post-lexical integrational stage of processing.
Resumo:
Item noise models of recognition assert that interference at retrieval is generated by the words from the study list. Context noise models of recognition assert that interference at retrieval is generated by the contexts in which the test word has appeared. The authors introduce the bind cue decide model of episodic memory, a Bayesian context noise model, and demonstrate how it can account for data from the item noise and dual-processing approaches to recognition memory. From the item noise perspective, list strength and list length effects, the mirror effect for word frequency and concreteness, and the effects of the similarity of other words in a list are considered. From the dual-processing perspective, process dissociation data on the effects of length, temporal separation of lists, strength, and diagnosticity of context are examined. The authors conclude that the context noise approach to recognition is a viable alternative to existing approaches.
Resumo:
The sensitivity of several short tests of speed of information processing to the effects of mild head injury in rugby league football was investigated. The measures used were the Symbol Digit Modalities Test, the Digit Symbol Substitution Test, and the Speed of Comprehension Test. Two studies were conducted, the first to examine the effect of practice, the second to determine sensitivity to cognitive impairment immediately following injury. The first study established alternate form equivalence and demonstrated that performance on the Speed of Comprehension and Digit Symbol Substitution tests improved with practice, whereas the Symbol Digit Modalities test remained stable. A second study of 10 players who subsequently sustained mild head injuries showed that measures of speed of information processing were sensitive to impairment in the postacute phase, whereas an untimed task of word recognition (Spot-the-Word) was not. Speed of Comprehension was more sensitive to postinjury impairment than either the Digit Symbol Substitution or Symbol Digit Modalities tests. A repeated baseline assessment before injury using the higher score to reflect a player's potential, allowed measurement of impaired performance on sensitive tests.
Resumo:
Groups of Grade 3 children were tested on measures of word-level literacy and undertook tasks that required the ability to associate sounds with letter sequences and that involved visual, auditory and phonological-processing skills. These groups came from different language backgrounds in which the language of instruction was Arabic, Chinese, English, Hungarian or Portuguese. Similar measures were used across the groups, with tests being adapted to be appropriate for the language of the children. Findings indicated that measures of decoding and phonological-processing skills were good predictors of word reading and spelling among Arabic- and English-speaking children, but were less able to predict variability in these same early literacy skills among Chinese- and Hungarian-speaking children, and were better at predicting variability in Portuguese word reading than spelling. Results were discussed with reference to the relative transparency of the script and issues of dyslexia assessment across languages. Overall, the findings argue for the need to take account of features of the orthography used to represent a language when developing assessment procedures for a particular language and that assessment of word-level literacy skills and a phonological perspective of dyslexia may not be universally applicable across all language contexts. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
We used event-related functional magnetic resonance imaging (fMRI) to investigate neural responses associated with the semantic interference (SI) effect in the picture-word task. Independent stage models of word production assume that the locus of the SI effect is at the conceptual processing level (Levelt et al. [1999]: Behav Brain Sci 22:1-75), whereas interactive models postulate that it occurs at phonological retrieval (Starreveld and La Heij [1996]: J Exp Psychol Learn Mem Cogn 22:896-918). In both types of model resolution of the SI effect occurs as a result of competitive, spreading activation without the involvement of inhibitory links. These assumptions were tested by randomly presenting participants with trials from semantically-related and lexical control distractor conditions and acquiring image volumes coincident with the estimated peak hemodynamic response for each trial. Overt vocalization of picture names occurred in the absence of scanner noise, allowing reaction time (RT) data to be collected. Analysis of the RT data confirmed the SI effect. Regions showing differential hemodynamic responses during the SI effect included the left mid section of the middle temporal gyrus, left posterior superior temporal gyrus, left anterior cingulate cortex, and bilateral orbitomedial prefrontal cortex. Additional responses were observed in the frontal eye fields, left inferior parietal lobule, and right anterior temporal and occipital cortex. The results are interpreted as indirectly supporting interactive models that allow spreading activation between both conceptual processing and phonological retrieval levels of word production. In addition, the data confirm that selective attention/response suppression has a role in resolving the SI effect similar to the way in which Stroop interference is resolved. We conclude that neuroimaging studies can provide information about the neuroanatomical organization of the lexical system that may prove useful for constraining theoretical models of word production. (C) 2001 Wiley-Liss, Inc.
Resumo:
Rival claims have been made concerning the importance of rime sensitivity as a predictor of early word reading skill. Hulme et al. (2002) suggested that phoneme sensitivity is more strongly predictive of word reading ability than is onset-rime sensitivity. An examination of two independent data sets suggests that, although onset-rime sensitivity typically predicts school entrants' later word reading skill, phoneme sensitivity does predict more variation. However, multiple regression analyses do not reveal the level of phonological sensitivity that children need in order to understand alphabetic reading instruction. This issue is crucial to the detection of children at risk for reading failure and for the design of intervention programs for these children. A different analytic strategy is described for addressing this issue. (C) 2002 Elsevier Science (USA).
Resumo:
The processing of lexical ambiguity in context was investigated in eight individuals with schizophrenia and a matched control group. Participants made speeded lexical decisions on the third word in auditory word triplets representing concordant (coin-bank-money), discordant (river-bank-money). neutral (day-bank-money), and unrelated (river-day-money) conditions. When the interstimulus interval (ISI) between the words was 100 ms. individuals with schizophrenia demonstrated priming consistent with selective. context-based lexical activation. At 1250 ms ISI a pattern of nonselective meaning facilitation was obtained. These results suggest an attentional breakdown in the sustained inhibition of meanings on the basis of lexical context. (C) 2002 Elsevier Science (USA).
Resumo:
Previous studies have demonstrated that a region in the left ventral occipito-temporal (LvOT) cortex is highly selective to the visual forms of written words and objects relative to closely matched visual stimuli. Here, we investigated why LvOT activation is not higher for reading than picture naming even though written words and pictures of objects have grossly different visual forms. To compare neuronal responses for words and pictures within the same LvOT area, we used functional magnetic resonance imaging adaptation and instructed participants to name target stimuli that followed briefly presented masked primes that were either presented in the same stimulus type as the target (word-word, picture-picture) or a different stimulus type (picture-word, word-picture). We found that activation throughout posterior and anterior parts of LvOT was reduced when the prime had the same name/response as the target irrespective of whether the prime-target relationship was within or between stimulus type. As posterior LvOT is a visual form processing area, and there was no visual form similarity between different stimulus types, we suggest that our results indicate automatic top-down influences from pictures to words and words to pictures. This novel perspective motivates further investigation of the functional properties of this intriguing region.
Resumo:
The reliance in experimental psychology on testing undergraduate populations with relatively little life experience, and/or ambiguously valenced stimuli with varying degrees of self-relevance, may have contributed to inconsistent findings in the literature on the valence hypothesis. To control for these potential limitations, the current study assessed lateralised lexical decisions for positive and negative attachment words in 40 middle-aged male and female participants. Self-relevance was manipulated in two ways: by testing currently married compared with previously married individuals and by assessing self-relevance ratings individually for each word. Results replicated a left hemisphere advantage for lexical decisions and a processing advantage of emotional over neutral words but did not support the valence hypothesis. Positive attachment words yielded a processing advantage over neutral words in the right hemisphere, while emotional words (irrespective of valence) yielded a processing advantage over neutral words in the left hemisphere. Both self-relevance manipulations were unrelated to lateralised performance. The role of participant sex and age in emotion processing are discussed as potential modulators of the present findings.
Resumo:
Traditionally, the ventral occipito-temporal (vOT) area, but not the superior parietal lobules (SPLs), is thought as belonging to the neural system of visual word recognition. However, some dyslexic children who exhibit a visual attention span disorder - i.e. poor multi-element parallel processing - further show reduced SPLs activation when engaged in visual multi-element categorization tasks. We investigated whether these parietal regions further contribute to letter-identity processing within strings. Adult skilled readers and dyslexic participants with a visual attention span disorder were administered a letter-string comparison task under fMRI. Dyslexic adults were less accurate than skilled readers to detect letter identity substitutions within strings. In skilled readers, letter identity differs related to enhanced activation of the left vOT. However, specific neural responses were further found in the superior and inferior parietal regions, including the SPLs bilaterally. Two brain regions that are specifically related to substituted letter detection, the left SPL and the left vOT, were less activated in dyslexic participants. These findings suggest that the left SPL, like the left vOT, may contribute to letter string processing.
Resumo:
Although functional neuroimaging studies have supported the distinction between explicit and implicit forms of memory, few have matched explicit and implicit tests closely, and most of these tested perceptual rather than conceptual implicit memory. We compared event-related fMRI responses during an intentional test, in which a group of participants used a cue word to recall its associate from a prior study phase, with those in an incidental test, in which a different group of participants used the same cue to produce the first associate that came to mind. Both semantic relative to phonemic processing at study, and emotional relative to neutral word pairs, increased target completions in the intentional test, but not in the incidental test, suggesting that behavioral performance in the incidental test was not contaminated by voluntary explicit retrieval. We isolated the neural correlates of successful retrieval by contrasting fMRI responses to studied versus unstudied cues for which the equivalent "target" associate was produced. By comparing the difference in this repetition-related contrast across the intentional and incidental tests, we could identify the correlates of voluntary explicit retrieval. This contrast revealed increased bilateral hippocampal responses in the intentional test, but decreased hippocampal responses in the incidental test. A similar pattern in the bilateral amygdale was further modulated by the emotionality of the word pairs, although surprisingly only in the incidental test. Parietal regions, however, showed increased repetition-related responses in both tests. These results suggest that the neural correlates of successful voluntary explicit memory differ in directionality, even if not in location, from the neural correlates of successful involuntary implicit (or explicit) memory, even when the incidental test taps conceptual processes.