935 resultados para Wood pellet
Resumo:
This project evaluated the timber quality, processing and performance characteristics of 19-year-old Eucalyptus cloeziana (Gympie messmate) and 15-year-old Eucalyptus pellita (red mahogany). Studies were undertaken to evaluate wood and mechanical properties, accelerated seasoning and veneer and plywood production. Above-ground and in-ground durability field tests were established at three locations in Queensland. Ground proixmity tests and L-joint tests were installed to gather data applicable to above-ground, weather-exposed end-use applications, and stake tests were installed to gather data applicable to in-ground, weather-exposed end-use applications.
Resumo:
Drying trials were conducted using two species of plantation grown eucalypt timbers: 19-year-old Eucalyptus cloeziana (Gympie messmate) and 15-year-old Eucalyptus pellita (red mahogany). The objective of this study was to gain an understanding of the drying potential of young plantation grown material using accelerated seasoning methods, a process expected to be critcal to the success of plantation hardwood products entering value added markets. The findings are encouraging, indicating that both species can be dried using conventional drying techniques much faster than industry is currently achieving when drying native forest timber. The results suggest that there is a definite drying time advantatge in vacuum drying over conventional methods for 19-year-old E. cloeziana. The findings have shown that through careful schedule manipulation and adjustment, the grade quality can be optimised to suit the desired expectation. As this study was limited to only a small number of trials, time and quality improvements are expected to be realised for both conventional and vacuum drying methods as more research is conducted.
Resumo:
This study provides information about wood quality, structural properties, processing characterists and product suitability of wood harvested from fast-grown hardwood plantations. Wood quality attributes tested included density, extractive content, unit shrinkage, heartwood proportion and sapwood width. Structural properties tested included small clear and full section strength and stiffness, hardness, joint group, visual grade assessment and natural vibration-based grade assessment. The variation between the inner, intermediate and outer heartwood zones and the variation between provenances was also tested. Overall, the wood qualtiy attributes measured for 19 year-old E. cloeziana and 15 year-old E. pellita plantation material fall between those expected from the wood of mature, native forest trees and those found in younger plantation material of the same species.
Resumo:
Logs from two hardwood plantations in north Queensland were peeled to assess the veneer and plywood potential of fast-grown tropical plantation eucalypts. After visual grading and veneer recovery calculatios, selected veneers were assembled to produce plywood panels. These were tested for mechanical properties and glue bond strength to determine the suitability of young, fast-grown, tropical eucalytps for panel product applications.
Resumo:
The review of existing information has identified the following: - the juvenile core in Araucaria is probably contained within the first 15 growth rings in the pith, with spiral grain being a chief determinant of its extent within the stem; - a reduction in rotation length for a given site index will reduce ASV and mature wood volume, with an increase in the proportion of juvenile wood; - for a given rotation length, lower ASV stems were estimated to contain a lower proportion of juvenile wood (based on the assumptions made and crude simulations using WEEDS, PL YSIM and STEPS software); regardless of juvenile wood proportions, smaller stems will yield a higher proportion of pith-in material; - an increase in the proportion of juvenile wood, due to a reduction in rotation length, could affect wood quality due to an increase in the proportion of the recovery containing high spiral grain, shorter tracheids and higher micellar angle; - high spiral grain and high micellar angles adversely impact on wood quality through their influence on twist and longitudinal shrinkage, respectively; - positive outcomes from a reduction in rotation length might include an increase in the proportion of live knots in upper stem sections and a reduction in the extent of brown-stain heartwood; - the uniformity in basic density within Araucaria stems means reduced rotation lengths and lower stem ASVs are unlikely to have a major impact on this wood property, and - the effect of a reduction in rotation length on the incidence of compression wood and timber susceptible to kiln staining could not be established from the available information.
Resumo:
An important challenge in forest industry is to get the appropriate raw material out from the forests to the wood processing industry. Growth and stem reconstruction simulators are therefore increasingly integrated in industrial conversion simulators, for linking the properties of wooden products to the three-dimensional structure of stems and their growing conditions. Static simulators predict the wood properties from stem dimensions at the end of a growth simulation period, whereas in dynamic approaches, the structural components, e.g. branches, are incremented along with the growth processes. The dynamic approach can be applied to stem reconstruction by predicting the three-dimensional stem structure from external tree variables (i.e. age, height) as a result of growth to the current state. In this study, a dynamic growth simulator, PipeQual, and a stem reconstruction simulator, RetroSTEM, are adapted to Norway spruce (Picea abies [L.] Karst.) to predict the three-dimensional structure of stems (tapers, branchiness, wood basic density) over time such that both simulators can be integrated in a sawing simulator. The parameterisation of the PipeQual and RetroSTEM simulators for Norway spruce relied on the theoretically based description of tree structure developing in the growth process and following certain conservative structural regularities while allowing for plasticity in the crown development. The crown expressed both regularity and plasticity in its development, as the vertical foliage density peaked regularly at about 5 m from the stem apex, varying below that with tree age and dominance position (Study I). Conservative stem structure was characterized in terms of (1) the pipe ratios between foliage mass and branch and stem cross-sectional areas at crown base, (2) the allometric relationship between foliage mass and crown length, (3) mean branch length relative to crown length and (4) form coefficients in branches and stem (Study II). The pipe ratio between branch and stem cross-sectional area at crown base, and mean branch length relative to the crown length may differ in trees before and after canopy closure, but the variation should be further analysed in stands of different ages and densities with varying site fertilities and climates. The predictions of the PipeQual and RetroSTEM simulators were evaluated by comparing the simulated values to measured ones (Study III, IV). Both simulators predicted stem taper and branch diameter at the individual tree level with a small bias. RetroSTEM predictions of wood density were accurate. For focusing on even more accurate predictions of stem diameters and branchiness along the stem, both simulators should be further improved by revising the following aspects in the simulators: the relationship between foliage and stem sapwood area in the upper stem, the error source in branch sizes, the crown base development and the height growth models in RetroSTEM. In Study V, the RetroSTEM simulator was integrated in the InnoSIM sawing simulator, and according to the pilot simulations, this turned out to be an efficient tool for readily producing stand scale information about stem sizes and structure when approximating the available assortments of wood products.
Variation in tracheid cross-sectional dimensions and wood viscoelasticity extent and control methods
Resumo:
Printing papers have been the main product of the Finnish paper industry. To improve properties and economy of printing papers, controlling of tracheid cross-sectional dimensions and wood viscoelasticity are examined in this study. Controlling is understood as any procedure which yields raw material classes with distinct properties and small internal variation. Tracheid cross-sectional dimensions, i.e., cell wall thickness and radial and tangential diameters can be controlled with methods such as sorting wood into pulpwood and sawmill chips, sorting of logs according to tree social status and fractionation of fibres. These control methods were analysed in this study with simulations, which were based on measured tracheid cross-sectional dimensions. A SilviScan device was used to measure the data set from five Norway spruce (Picea abies) and five Scots pine (Pinus sylvestris) trunks. The simulation results indicate that the sawmill chips and top pulpwood assortments have quite similar cross-sectional dimensions. Norway spruce and Scots pine are on average also relatively similar in their cross-sectional dimensions. The distributions of these species are somewhat different, but from a practical point of view, the differences are probably of minor importance. The controlling of tracheid cross-sectional dimensions can be done most efficiently with methods that can separate fibres into earlywood and latewood. Sorting of logs or partitioning of logs into juvenile and mature wood were markedly less efficient control methods than fractionation of fibres. Wood viscoelasticity affects energy consumption in mechanical pulping, and is thus an interesting control target when improving energy efficiency of the process. A literature study was made to evaluate the possibility of using viscoelasticity in controlling. The study indicates that there is considerable variation in viscoelastic properties within tree species, but unfortunately, the viscoelastic properties of important raw material lots such as top pulpwood or sawmill chips are not known. Viscoelastic properties of wood depend mainly on lignin, but also on microfibrillar angle, width of cellulose crystals and tracheid cross-sectional dimensions.
Resumo:
This review highlights the considerable variation found in wood properties impacting timber stiffness and stability such as wood density, spiral grain and microfibril angle. Variation with age, site quality and environment, as well as amongst species, hybrids and genetic stock is reported and opportunities for product-focused wood quality improvement are identified.
Resumo:
Wood quality and properties of plantation grown trees differ from those from mature, natural grown trees and this has implications for processing, manufacturing and product performance. The wood properties of genetically improved and syliculturally managed plantation trees are affected by their faster growth rates younger harvest age. This report summarises the key wood properties of species that are the primary candidates for plantation forestry in the subtropical to tropical region of eastern Australia. The planned end uses for these trees vary from short-rotation pulp to high-value products such as poles, sawn timber for appearance products and engineered wood products including structural plywood and laminated veneer lumber (LVL).
Resumo:
The purpose of this study was to extend understanding of how large firms pursuing sustained and profitable growth manage organisational renewal. A multiple-case study was conducted in 27 North American and European wood-industry companies, of which 11 were chosen for closer study. The study combined the organisational-capabilities approach to strategic management with corporate-entrepreneurship thinking. It charted the further development of an identification and classification system for capabilities comprising three dimensions: (i) the dynamism between firm-specific and industry-significant capabilities, (ii) hierarchies of capabilities and capability portfolios, and (iii) their internal structure. Capability building was analysed in the context of the organisational design, the technological systems and the type of resource-bundling process (creating new vs. entrenching existing capabilities). The thesis describes the current capability portfolios and the organisational changes in the case companies. It also clarifies the mechanisms through which companies can influence the balance between knowledge search and the efficiency of knowledge transfer and integration in their daily business activities, and consequently the diversity of their capability portfolio and the breadth and novelty of their product/service range. The largest wood-industry companies of today must develop a seemingly dual strategic focus: they have to combine leading-edge, innovative solutions with cost-efficient, large-scale production. The use of modern technology in production was no longer a primary source of competitiveness in the case companies, but rather belonged to the portfolio of basic capabilities. Knowledge and information management had become an industry imperative, on a par with cost effectiveness. Yet, during the period of this research, the case companies were better in supporting growth in volume of the existing activity than growth through new economic activities. Customer-driven, incremental innovation was preferred over firm-driven innovation through experimentation. The three main constraints on organisational renewal were the lack of slack resources, the aim for lean, centralised designs, and the inward-bound communication climate.
Resumo:
The aim of this thesis was to study the basic relationships between thinning and fertilisation, tree growth rate and wood properties of Norway spruce (Picea abies (L.) Karst.) throughout a stand rotation. The material consisted of a total of 109 trees from both long-term thinning (Heinola, 61°10'N, 26°01'E; Punkaharju, 61°49'N, 29°19'E) and fertilisation-thinning experiments (Parikkala, 61°36'N, 29°22'E; Suonenjoki, 62°45'N, 27°00'E) in Finland. Wood properties, i.e., radial increment, wood density, latewood proportion, tracheid length, cell wall thickness and lumen diameter, as well as relative lignin content, were measured in detail from the pith to the bark, as well as from the stem base towards the stem apex. Intensive thinning and fertilisation treatments of Norway spruce stands increased (8% 64%) the radial increment of studied trees at breast height (1.3 m). At the same time, a faster growth rate slightly decreased average wood density (2% 7%), tracheid length (0% 9%) and cell wall thickness (1% 17%). The faster growth resulted in only small changes (0% 9%) in lumen diameter and relative lignin content (1% 2%; lignin content was 25.4% 26%). However, the random variation in wood properties was large both between and within trees and annual rings. The results of this thesis indicate that the prevailing thinning and fertilisation treatments of Norway spruce stands in Fennoscandia may significantly enhance the radial increment of individual trees, and cause only small or no detrimental changes in wood and tracheid properties.
Resumo:
The basis for this study was in poor attractiveness of the wood products industry among young people as a field to study and work in. The purpose was to produce new information of how to improve the relationship between young people and the wood products industry in order to better attract young people with different relational orientation. A survey was conducted among students of comprehensive schools and students of wood industry at vocational schools selected by systematic cluster sampling. The final sample consisted of 613 students. The study combined the theories and concepts of relationships, communication and trust of several disciplines. In addition, it applied theories of relationship marketing, stakeholders, publics, involvement and concepts of reputation and values. It studied the central relational elements in the form of antecedents, relationship state and its consequences. The study examined, how young people with different background and level of interest perceive wood industry as a field to study and work in from relational point of view, what are the central deficiencies in perceived relational elements and what are the public relations activities enhancing the relationship between wood industry and young people with less and high interest in the sector. The results indicate poor visibility of the wood industry among young people: unfamiliarity with the industry and unawareness of the opportunities to study in the field. It appeared that instead of increasing only information sharing, interactive communication in different forms is needed. The study also suggests that behaviors of the industry sector advancing perceived trustworthiness are of crucial importance. Moreover, the wood industry needs to pay attention to its behaviors and communication also among other stakeholder groups, especially the media, as reputation plays an important role in building up trust and satisfaction between young people and the sector. Finally, the less and highly interested young people were found to assess the relationship partly through different relational elements. In order to develop the relationship with highly interested young people they should be regarded clearly as future employees of the wood industry through activities affirming that they are desired and valued employees in the sector. Further, openness of information disclosure, whether concerning current situation or future prospects, seems to increase credibility and attractiveness of the wood industry. Highly interested young people were also found to appreciate socially responsible activities. The less interested young people seem to be insecure about the reliability of the wood industry as an employer, as well as, its ability and interest to invest in young people s skills. In addition,involvement in issues relevant for young people was found crucial in enhancing the relationship with the less interested young people.The conclusions of the study provide tools for enhancing the attractiveness of the wood industry among young people not only to the industry itself, but also to its advocates, teachers and student counselors of comprehensive and vocational schools, authorities and policy makers.
Resumo:
Wood is an important biological resource which contributes to nutrient and hydrology cycles through ecosystems, and provides structural support at the plant level. Thousands of genes are involved in wood development, yet their effects on phenotype are not well understood. We have exploited the low genomic linkage disequilibrium (LD) and abundant phenotypic variation of forest trees to explore allelic diversity underlying wood traits in an association study. Candidate gene allelic diversity was modelled against quantitative variation to identify SNPs influencing wood properties, growth and disease resistance across three populations of Corymbia citriodora subsp. variegata, a forest tree of eastern Australia. Nine single nucleotide polymorphism (SNP) associations from six genes were identified in a discovery population (833 individuals). Associations were subsequently tested in two smaller populations (130160 individuals), validating our findings in three cases for actin 7 (ACT7) and COP1 interacting protein 7 (CIP7). The results imply a functional role for these genes in mediating wood chemical composition and growth, respectively. A flip in the effect of ACT7 on pulp yield between populations suggests gene by environment interactions are at play. Existing evidence of gene function lends strength to the observed associations, and in the case of CIP7 supports a role in cortical photosynthesis.