969 resultados para Wood chemical properties
Resumo:
Duarte MAH, Alves de Aguiar K, Zeferino MA, Vivan RR, Ordinola-Zapata R, Tanomaru-Filho M, Weckwerth PH, Kuga MC. Evaluation of the propylene glycol association on some physical and chemical properties of mineral trioxide aggregate. International Endodontic Journal, 45, 565570, 2012. Abstract Aim To evaluate the influence of propylene glycol (PG) on the flowability, setting time, pH and calcium ion release of mineral trioxide aggregate (MTA). Methodology Mineral trioxide aggregate was mixed with different proportions of PG, as follows: group 1: MTA + 100% distilled water (DW); group 2: MTA + 80% DW and 20% PG; group 3: MTA + 50% DW and 50% PG; group 4: MTA + 20% DW and 80% PG; group 5: MTA + 100% PG. The ANSI/ADA No. 57 was followed for evaluating the flowability and the setting time was measured by using ASTM C266-08. For pH and calcium release analyses, 50 acrylic teeth with root-end cavities were filled with the materials (n = 10) and individually immersed in flasks containing 10 mL deionized water. After 3 h, 24 h, 72 h and 168 h, teeth were placed in new flasks and the water in which each specimen was immersed had its pH determined by a pH metre and the calcium release measured by an atomic absorption spectrophotometer with a calcium-specific hollow cathode lamp. Data were analysed by using one-way anova test for global comparison and by using Tukeys test for individual comparisons. Results The highest value of flowability was observed with MTA + 20% DW and 80% PG and the lowest values were found with MTA + 100% DW. They were significantly different compared to the other groups (P < 0.05). The presence of PG did not affect the pH and calcium release. The MTA + 100% PG favoured the highest (P < 0.05) pH and calcium release after 3 h. Increasing the PG proportion interfered (P < 0.05) with the setting time; when used at the volume of 100% setting did not occur. Conclusion The addition of PG to MTA-Angelus increased its setting time, improved flowability and increased the pH and calcium ion release during the initial post-mixing periods. The ratio of 80% DW 20% PG is recommended.
Resumo:
Devido às mudanças climáticas do planeta, principalmente ao aquecimento global, as formas de utilização dos solos na agricultura têm atraído grande atenção de pesquisadores. Mudanças de manejo podem influenciar a respiração do solo e, por conseguinte, alterar drasticamente o sequestro de C. Os objetivos deste trabalho foram avaliar, em semeadura direta, a influência da calagem nas emissões de CO2 do solo e correlacioná-las aos atributos químicos deste após dois anos da calagem. Utilizou-se o delineamento em blocos casualizados, com seis repetições. Os tratamentos constituíram de quatro doses de calcário e uma testemunha. Decorridos dois anos da calagem, avaliou-se a emissão residual de CO2 do solo, coletaram-se amostras nas camadas de 0-5, 5-10, 10-20 e 20-30 cm de profundidade e determinaram-se os teores de P, Ca2+ e Mg2+ e valores de pH e de saturação por bases. A emissão residual de CO2 do solo, quando a dose recomendada foi aplicada, foi 24,1 % superior, quando comparada à do solo sem aplicação de calcário, e 47,4 % maior, quando se aplicou o dobro da dose recomendada. A calagem melhorou as condições químicas do solo, e a emissão de CO2 aumentou linearmente com o aumento das doses. A emissão de CO2 do solo apresentou correlações positivas com os teores de P, Ca2+ e Mg2+ e com os valores de pH e de saturação por bases e negativas com os teores de H + Al e Al3+. Maiores coeficientes de correlação entre as taxas de emissão de CO2 do solo e os atributos químicos deste ocorreram na camada de 10-20 cm.
Resumo:
O impacto dos resíduos orgânicos agroindustriais no ambiente pode ser reduzido com o seu uso agrícola. do ponto de vista da fertilidade do solo, o que se deseja com a aplicação dos resíduos é aumentar o teor de matéria orgânica e fornecer nutrientes para as plantas. Neste trabalho, objetivou-se avaliar o efeito do lodo biológico de indústria de gelatina em atributos químicos de dois Argissolos Vermelho-Amarelos (PVA-arenoso e PVA-textura média) e de um Latossolo Vermelho (LV-argiloso). O experimento foi conduzido por 120 dias em laboratório, em delineamento inteiramente casualizado e esquema fatorial combinando os três solos e seis doses de lodo (0, 100, 200, 300, 400 e 500 m³ ha-1), com três repetições. A aplicação de até 500 m³ ha-1 de lodo diminui a acidez do solo e aumenta a CTC efetiva e a disponibilidade de N, Ca, Mg e P, sem ultrapassar o limite de tolerância para Na. O aumento do teor de bases, maior do que o da CTC efetiva, indica que a maior parte dos cátions adicionados pelo lodo permanece em solução e pode ser perdida por lixiviação.
Resumo:
In this work the relationship between CO2 emissions and the soil properties of a tropical Brazilian bare soil was investigated. Carbon dioxide emissions were measured on three different days at different soil temperature and the soil moisture conditions, and the soil properties were investigated at the same points that emissions were measured. The soil CO2 emissions were correlated to carbon content, cation exchange capacity and free iron content at the 65 points studied in an area of 100 x 100 m located in southern Brazil. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Organic residues may cause major health and environmental problems. This is the case in our study area, where more than 10 billion L per year of residential and industrial waste are produced. Land application of biosolids can be an economical solution by recycling waste and can provide valuable fertilizer if used correctly. The aim of this work was to study the effect of biosolids on the chemical properties of an Oxisol. The experiment was located at Ilha Solteira northwest of São Paulo State, Brazil. The soil was cropped to Sorghum bicolor.The field experimental design consisted of random blocks with six treatments and four replications of each treatment. Biosolids were surface applied to four treatments at rates of 5, 10, 20, and 40 Mg ha(-1) on a dry matter basis; in addition, a treatment with mineral fertilizer and a control were included. One year after biosolids application, soil samples were taken at 0-10, 10-20, and 20-40 cm. Organic matter content (Walkley-Black) and pH (CaCl2) were routinely determined. Cation exchange capacity, exchangeable bases (Ca, Mg, K), and P were determined by exchange resin extraction. No significant differences in any of the analyzed properties were found below the 20 cm depth. Extractable phosphorus (P) and potassium (K) increased with increasing biosolids rate in the top 20 cm, whereas calcium (Ca) and (Ma) magnesium content were not significantly influenced by biosolids. Soil pH decreased with increasing biosolids application. The sewage sludge application did not influence the sorghum production in the first year of culture, under unfavorable soil moisture conditions, but it influenced the dry matter.
Resumo:
Forage plants, particularly the Brachiaria genus, are the main source of nutrients for cattle and are at times the only feed offered. The concentration of elements in the plant is related to the soil, fertilization, climate, season, variety, and cultural practices. An experiment on dystrophic Red-Yellow Latosol soil in Aracatuba, São Paulo was performed to evaluate the effects of the doses and sources of nitrogen fertilizers on the chemical properties of the soil and the dry matter yield of the grass Brachiaria brizantha cv. Xaraes. A randomized block design was employed involving three replicates in a 3 x 3 factorial, with three doses (100, 200 and 400 kg ha(-1) year(-1)) and three sources (Ajifer (R) L40, ammonium sulfate and urea) of nitrogen and a control treatment without nitrogen (zero). The greatest effects on the chemical properties of the soil as a function of nitrogen fertilization in the Xaraes grass were observed in the topsoil. The use of Ajifer (R) L40 and ammonium sulfate as sources of nitrogen had similar effects, with an increase in the sulfur content and a reduction in the soil pH at the superficial layer. The use of the fertilizers Ajifer (R) L40, ammonium sulfate and urea did not affect the micronutrient contents, except for Fe and Mn, and did not alter the sodium concentration or electrical conductivity of the soil. The dry matter yield of Xaraes grass was similar for all three nitrogen sources.
Resumo:
Aim: To evaluate the release of calcium ions, pH and conductivity of a new experimental dental cement (EC) and to compare them with those of mineral trioxide aggregate (MTA-Angelus). Methodology: Five samples of each cement were prepared using plastic tubes 1 mm in diameter and 10 mm long. Each sample was sealed in a test tube containing 10 mL deionized water which was analysed after 24, 48, 72, 96, 192, 240 and 360 h for pH, electrical conductivity and calcium release. The concentration of calcium ions was obtained through atomic absorption spectroscopy technique. The data were analysed statistically using the analysis of variance (ANOVA) and the Student's test (t-test). Results: The pH of the storage solutions was not affected by the material and the interaction of material with time (P > 0.05). However, the time of immersion was significant (P < 0.01) for both materials. For the electric conductivity and calcium release, the interaction of material with time was statistically significant (P < 0.01), indicating that EC and MTA-Angelus did not behave in a similar manner. Conclusions: The experimental cement released calcium and increased the pH of the storage solutions in a similar manner to MTA-Angelus. However, EC showed significantly higher calcium release than commercial MTA-Angelus after 24 h. © 2005 International Endodontic Journal.
Resumo:
The change of chemical properties during storage of 12 fertilized bagged peats of different origins at high temperature was investigated. The average values for N, soluble salts and EC decreased significantly, whereas the pH as well as P and K contents changed only slightly. Differences in N were observed between the peats. The contents of CAT soluble N in the two dredged frozen black peats did not change during storage. However, a decrease in N was found when water extraction was used. In the case of the 10 white peats the loss of N differed considerably, but it was independent of the method of peat harvest. The N decrease resulted mainly from reduced levels of NO3-N. Substances damaging to plant growth do not seem to have developed during storage as shown by trials on the germination and the growth of Chinese cabbage. There were no significant differences between the peats, whether stored or not.
Resumo:
The chemical properties of 12 different peats have been analyzed by methods from VDLUFA (German Association of Agricultural Analysis and Research Institutes) and EN (European Committee for Standardization, Technical Committee 223: Soil improvers and growing media). The analyses of pH (CaCl 2), contents of salts (H 2O), nutrients (CAT), and Na and Cl (H 2O) were carried out by VDLUFA methods, while those of pH (H 2O), EC (H 2O), nutrients (CAT), Na (CAT and H 2O) and Cl (H 2O) according to EN. Ten milled or sod white peats and two dredged frozen black peats of different degrees of decomposition were used. All of them contained high amounts of Mg, while black peats were additionally high in N, Fe and Zn. The pH-values were about the same for all peats. N- and Mn-contents depended most on peat origin. Analytical values of both CAT-methods were in the same range. Extraction with H 2O (EN) as compared to CAT (EN) resulted in considerably lower values.
Resumo:
Extracellular xylanase and β-xylosidase production by a Penicillium janczewskii strain were investigated in liquid cultures with xylan from oat spelts under different physical and chemical conditions. The selected conditions for optimized production of xylanase and β-xylosidase were 7 days, pH 6.5, at 30 °C and 8 days, pH 5.0, at 25 °C, respectively. The xylanase exhibited optimal activity in pH 5.0 at 50 °C and the β- xylosidase in pH 4.0 at 75 °C. The xylanase was more stable at pH 6.0 to 9.5, while the β-xylosidase remained stable at pH ranging from 1.6 to 5.5. The xylanase half-life (T50) at 40, 50, and 60 °C was 183, 15, and 3 min, respectively. β-xylosidase half-life was 144, 8, and 4 min at 50, 65, and 75 °C, respectively. When applied to the biobleaching of Eucalyptus kraft pulp, xylanase dosages of 2 and 4 U/g dried pulp reduced, respectively, kappa number by 3.0 and 3.3 units after 1 h treatment, demonstrating that the use of P. janczewskii xylanases in this process is quite promising. The pulp viscosity was not altered, confirming the absence of cellulolytic enzymes in the fungal extract.
Resumo:
The sampling scheme is essential in the investigation of the spatial variability of soil properties in Soil Science studies. The high costs of sampling schemes optimized with additional sampling points for each physical and chemical soil property, prevent their use in precision agriculture. The purpose of this study was to obtain an optimal sampling scheme for physical and chemical property sets and investigate its effect on the quality of soil sampling. Soil was sampled on a 42-ha area, with 206 geo-referenced points arranged in a regular grid spaced 50 m from each other, in a depth range of 0.00-0.20 m. In order to obtain an optimal sampling scheme for every physical and chemical property, a sample grid, a medium-scale variogram and the extended Spatial Simulated Annealing (SSA) method were used to minimize kriging variance. The optimization procedure was validated by constructing maps of relative improvement comparing the sample configuration before and after the process. A greater concentration of recommended points in specific areas (NW-SE direction) was observed, which also reflects a greater estimate variance at these locations. The addition of optimal samples, for specific regions, increased the accuracy up to 2 % for chemical and 1 % for physical properties. The use of a sample grid and medium-scale variogram, as previous information for the conception of additional sampling schemes, was very promising to determine the locations of these additional points for all physical and chemical soil properties, enhancing the accuracy of kriging estimates of the physical-chemical properties.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Recently, various calcium silicate-based sealers have been introduced for use in root canal filling. The MTA Fillapex is one of these sealers, but some of its physicochemical properties are not in accordance with the ISO requirements. Objective: The aim of this study was to evaluate the flowability, pH level and calcium release of pure MTA Fillapex (MTAF) or containing 5% (MTAF5) or 10% (MTAF10) calcium hydroxide (CH), in weight, in comparison with AH Plus sealer. Material and Methods: The flowability test was performed according to the ISO 6876: 2001 requirements. For the pH level and calcium ion release analyses, the sealers were placed individually (n=10) in plastic tubes and immersed in deionized water. After 24 hours, 7 and 14 days, the water in which each specimen had been immersed was evaluated to determine the pH level changes and calcium released. Flowability, pH level and calcium release data were analyzed statistically by the ANOVA test (alpha=5%). Results: In relation to flowability: MTAF>AH Plus>MTAF5>MTAF10. In relation to the pH level, for 24 h: MTAF5=MTAF10=MTAF>AH Plus; for 7 and 14 days: MTAF5=MTAF10>MTAF>AH Plus. For the calcium release, for all periods: MTAF>MTAF5=MTAF10>AH Plus. Conclusions: The addition of 5% CH to the MTA Fillapex (in weight) is an alternative to reduce the high flowability presented by the sealer, without interfering in its alkalization potential.
Resumo:
The objective of this study was to evaluate the use of biofertilisers for the production of alfalfa shoot, root and nodule dry matter, and also, to evaluate the chemical properties of the soil. This study was conducted in the greenhouse of the Support Department, Animal Production and Health, Faculty of Veterinary Medicine/UNESP, Aracatuba - SP, from May to October 2010. The experimental design was completely randomised with six biofertiliser doses (0, 25, 50, 100, 200 and 400 m(3) ha(-1)) and five replicates. The biofertiliser doses were the primary treatments and the cuts (five) were subplots. The cuts were performed, on average, every 27 days at 10 cm above the soil. At the end of the experiment, the roots, nodules and soil from all experimental units were collected for chemical analysis. We observed a linear increase in dry matter production of the shoots relative to the doses studied. The dry matter production of the roots and nodules was not significantly different. The chemical properties of the soil significantly improved for calcium and magnesium as well as the sum of bases and base saturation with biofertiliser application. Biofertilisers can be used for agricultural production and favourably alter the soil characteristics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)