935 resultados para Wind turbines
Resumo:
La predicción de energía eólica ha desempeñado en la última década un papel fundamental en el aprovechamiento de este recurso renovable, ya que permite reducir el impacto que tiene la naturaleza fluctuante del viento en la actividad de diversos agentes implicados en su integración, tales como el operador del sistema o los agentes del mercado eléctrico. Los altos niveles de penetración eólica alcanzados recientemente por algunos países han puesto de manifiesto la necesidad de mejorar las predicciones durante eventos en los que se experimenta una variación importante de la potencia generada por un parque o un conjunto de ellos en un tiempo relativamente corto (del orden de unas pocas horas). Estos eventos, conocidos como rampas, no tienen una única causa, ya que pueden estar motivados por procesos meteorológicos que se dan en muy diferentes escalas espacio-temporales, desde el paso de grandes frentes en la macroescala a procesos convectivos locales como tormentas. Además, el propio proceso de conversión del viento en energía eléctrica juega un papel relevante en la ocurrencia de rampas debido, entre otros factores, a la relación no lineal que impone la curva de potencia del aerogenerador, la desalineación de la máquina con respecto al viento y la interacción aerodinámica entre aerogeneradores. En este trabajo se aborda la aplicación de modelos estadísticos a la predicción de rampas a muy corto plazo. Además, se investiga la relación de este tipo de eventos con procesos atmosféricos en la macroescala. Los modelos se emplean para generar predicciones de punto a partir del modelado estocástico de una serie temporal de potencia generada por un parque eólico. Los horizontes de predicción considerados van de una a seis horas. Como primer paso, se ha elaborado una metodología para caracterizar rampas en series temporales. La denominada función-rampa está basada en la transformada wavelet y proporciona un índice en cada paso temporal. Este índice caracteriza la intensidad de rampa en base a los gradientes de potencia experimentados en un rango determinado de escalas temporales. Se han implementado tres tipos de modelos predictivos de cara a evaluar el papel que juega la complejidad de un modelo en su desempeño: modelos lineales autorregresivos (AR), modelos de coeficientes variables (VCMs) y modelos basado en redes neuronales (ANNs). Los modelos se han entrenado en base a la minimización del error cuadrático medio y la configuración de cada uno de ellos se ha determinado mediante validación cruzada. De cara a analizar la contribución del estado macroescalar de la atmósfera en la predicción de rampas, se ha propuesto una metodología que permite extraer, a partir de las salidas de modelos meteorológicos, información relevante para explicar la ocurrencia de estos eventos. La metodología se basa en el análisis de componentes principales (PCA) para la síntesis de la datos de la atmósfera y en el uso de la información mutua (MI) para estimar la dependencia no lineal entre dos señales. Esta metodología se ha aplicado a datos de reanálisis generados con un modelo de circulación general (GCM) de cara a generar variables exógenas que posteriormente se han introducido en los modelos predictivos. Los casos de estudio considerados corresponden a dos parques eólicos ubicados en España. Los resultados muestran que el modelado de la serie de potencias permitió una mejora notable con respecto al modelo predictivo de referencia (la persistencia) y que al añadir información de la macroescala se obtuvieron mejoras adicionales del mismo orden. Estas mejoras resultaron mayores para el caso de rampas de bajada. Los resultados también indican distintos grados de conexión entre la macroescala y la ocurrencia de rampas en los dos parques considerados. Abstract One of the main drawbacks of wind energy is that it exhibits intermittent generation greatly depending on environmental conditions. Wind power forecasting has proven to be an effective tool for facilitating wind power integration from both the technical and the economical perspective. Indeed, system operators and energy traders benefit from the use of forecasting techniques, because the reduction of the inherent uncertainty of wind power allows them the adoption of optimal decisions. Wind power integration imposes new challenges as higher wind penetration levels are attained. Wind power ramp forecasting is an example of such a recent topic of interest. The term ramp makes reference to a large and rapid variation (1-4 hours) observed in the wind power output of a wind farm or portfolio. Ramp events can be motivated by a broad number of meteorological processes that occur at different time/spatial scales, from the passage of large-scale frontal systems to local processes such as thunderstorms and thermally-driven flows. Ramp events may also be conditioned by features related to the wind-to-power conversion process, such as yaw misalignment, the wind turbine shut-down and the aerodynamic interaction between wind turbines of a wind farm (wake effect). This work is devoted to wind power ramp forecasting, with special focus on the connection between the global scale and ramp events observed at the wind farm level. The framework of this study is the point-forecasting approach. Time series based models were implemented for very short-term prediction, this being characterised by prediction horizons up to six hours ahead. As a first step, a methodology to characterise ramps within a wind power time series was proposed. The so-called ramp function is based on the wavelet transform and it provides a continuous index related to the ramp intensity at each time step. The underlying idea is that ramps are characterised by high power output gradients evaluated under different time scales. A number of state-of-the-art time series based models were considered, namely linear autoregressive (AR) models, varying-coefficient models (VCMs) and artificial neural networks (ANNs). This allowed us to gain insights into how the complexity of the model contributes to the accuracy of the wind power time series modelling. The models were trained in base of a mean squared error criterion and the final set-up of each model was determined through cross-validation techniques. In order to investigate the contribution of the global scale into wind power ramp forecasting, a methodological proposal to identify features in atmospheric raw data that are relevant for explaining wind power ramp events was presented. The proposed methodology is based on two techniques: principal component analysis (PCA) for atmospheric data compression and mutual information (MI) for assessing non-linear dependence between variables. The methodology was applied to reanalysis data generated with a general circulation model (GCM). This allowed for the elaboration of explanatory variables meaningful for ramp forecasting that were utilized as exogenous variables by the forecasting models. The study covered two wind farms located in Spain. All the models outperformed the reference model (the persistence) during both ramp and non-ramp situations. Adding atmospheric information had a noticeable impact on the forecasting performance, specially during ramp-down events. Results also suggested different levels of connection between the ramp occurrence at the wind farm level and the global scale.
Analysis of Renewable Energy Policies Related to Repowering the Wind Energy Sector: the Spanish Case
Resumo:
In countries that started early with wind energy, the old wind turbines were located in places where the wind is often very good. Since the best places in which the wind is concerned are occupied by old wind turbines (with lower capacity than the more recent ones) the trend is to start replacing old turbines with new ones. With repowering, the first generation of wind turbines can be replaced by modern multi-megawatt wind turbines. The aim of this article is to analyze energy policies in the Spanish energy sector in the repowering of wind farms from the viewpoint of the current situation of the wind energy sector. The approach presented in this article is meant to explain what have been the policies related to the repowering sector making a brief analysis of the spectrum of different stimulii that are demanded by the market analyzing also the future perspectives of the repowering sector by establishing the new opportunities based on the new published regulations.
Resumo:
The calibration coefficients of several models of cup and propeller anemometers were analysed. The analysis was based on a series of laboratory calibrations between January 2003 and August 2007. Mean and standard deviation values of calibration coefficients from the anemometers studied were included. Two calibration procedures were used and compared. In the first, recommended by the Measuring network of Wind Energy Institutes (MEASNET), 13 measurement points were taken over a wind speed range of 4 to 16 m s−1. In the second procedure, 9 measurement points were taken over a wider speed range of 4 to 23 m s−1. Results indicated no significant differences between the two calibration procedures applied to the same anemometer in terms of measured wind speed and wind turbines' Annual Energy Production (AEP). The influence of the cup anemometers' design on the calibration coefficients was also analysed. The results revealed that the slope of the calibration curve, if based on the rotation frequency and not the anemometer's output frequency, seemed to depend on the cup center rotation radius.
Resumo:
El principal objetivo de este trabajo es aportar conocimiento para contestar la pregunta: ¿hasta que punto los ensayos en túnel aerodinámico pueden contribuir a determinar las características que afectan la respuesta dinámica de los aerogeneradores operando en terreno complejo?. Esta pregunta no es nueva, de hecho, el debate en la comunidad científica comenzó en el primer tercio del siglo pasado y aún está intensamente vivo. El método generalmente aceptado para enfrentar el mencionado problema consiste en analizar un caso de estudio determinado en el cual se aplican tanto ensayos a escala real como análisis computacionales y ensayos en túnel aerodinámico. Esto no es ni fácil ni barato. Esta es la razón por la cual desde el experimento de Askervein en 1988, los modelizadores del flujo atmosférico tuvieron que esperar hasta 2007 a que el experimento de Bolund fuese puesto en marcha con un despliegue de medios técnicos equivalentes (teniendo en cuenta la evolución de las tecnologías de sensores y computación). El problema contempla tantos aspectos que ambas experiencias fueron restringidas a condiciones de atmósfera neutra con efectos de Coriolis despreciables con objeto de reducir la complejidad. Este es el contexto en el que se ha desarrollado la presente tesis doctoral. La topología del flujo sobre la isla de Bolund ha sido estudiada mediante la reproducción del experimento de Bolund en los túneles aerodinámicos A9 y ACLA16 del IDR. Dos modelos de la isla de Bolund fueron fabricados a dos escalas, 1:230 y 1:115. El flujo de entrada en el túnel aerodinámico simulando la capa límite sin perturbar correspondía a régimen de transición (transitionally rough regime) y fue usado como situación de referencia. El modelo a escala 1:230 fue ensayado en el túnel A9 para determinar la presión sobre su superficie. La distribución del coeficiente de presión sobre la isla proporcionó una visualización y estimación de una región de desprendimiento sobre el pequeño acantilado situado al frente de la misma. Las medidas de presión instantánea con suficiente grado de resolución temporal pusieron de manifiesto la no estacionariedad en la región de desprendimiento. El modelo a escala 1:115 fue ensayado utilizando hilo caliente de tres componentes y un sistema de velocimetría por imágenes de partículas de dos componentes. El flujo fue caracterizado por el ratio de aceleración, el incremento normalizado de energía cinética turbulenta y los ángulos de inclinación y desviación horizontal. Los resultados a lo largo de la dirección 270°y alturas de 2 m y 5 m presentaron una gran similitud con los resultados a escala real del experimento de Bolund. Los perfiles verticales en las localizaciones de las torres meteorológicas mostraron un acuerdo significativo con los resultados a escala real. El análisis de los esfuerzos de Reynolds y el análisis espectral en las localizaciones de los mástiles meteorológicos presentaron niveles de acuerdo variados en ciertas posiciones, mientras que en otras presentaron claras diferencias. El mapeo horizontal del flujo, para una dirección de viento de 270°, permitió caracterizar el comportamiento de la burbuja intermitente de recirculación sobre el pequeño acantilado existente al frente de la isla así como de la región de relajación y de la capa de cortadura en la región corriente abajo de Bolund. Se realizaron medidas de velocidad con alta resolución espacial en planos perpendiculares a la dirección del flujo sin perturbar. Estas medidas permitieron detectar y caracterizar una estructura de flujo similar a un torbellino longitudinal con regiones con altos gradientes de velocidad y alta intensidad de turbulencia. Esta estructura de flujo es, sin duda, un reto para los modelos computacionales y puede considerarse un factor de riesgo para la operación de los aerogeneradores. Se obtuvieron y analizaron distribuciones espaciales de los esfuerzos de Reynolds mediante 3CHW y PIV. Este tipo de parámetros no constituyen parte de los resultados habituales en los ensayos en túnel sobre topografías y son muy útiles para los modelizadores que utilizan simulación de grades torbellinos (LES). Se proporciona una interpretación de los resultados obtenidos en el túnel aerodinámico en términos de utilidad para los diseñadores de parques eólicos. La evolución y variación de los parámetros del flujo a lo largo de líneas, planos y superficies han permitido identificar como estas propiedades del flujo podrían afectar la localización de los aerogeneradores y a la clasificación de emplazamientos. Los resultados presentados sugieren, bajo ciertas condiciones, la robustez de los ensayos en túnel para estudiar la topología sobre terreno complejo y su comparabilidad con otras técnicas de simulación, especialmente considerando el nivel de acuerdo del conjunto de resultados presentados con los resultados a escala real. De forma adicional, algunos de los parámetros del flujo obtenidos de las medidas en túnel son difícilmente determinables en ensayos a escala real o por medios computacionales, considerado el estado del arte. Este trabajo fue realizado como parte de las actividades subvencionadas por la Comisión Europea como dentro del proyecto FP7-PEOPLE-ITN-2008WAUDIT (Wind Resource Assessment Audit and Standardization) dentro de la FP7 Marie-Curie Initial Training Network y por el Ministerio Español de Economía y Competitividad dentro del proyecto ENE2012-36473, TURCO (Determinación en túnel aerodinámico de la distribución espacial de parámetros estadísticos de la turbulencia atmosférica sobre topografías complejas) del Plan Nacional de Investigación (Subprograma de investigación fundamental no orientada 2012). El informe se ha organizado en siete capítulos y un conjunto de anexos. En el primer capítulo se introduce el problema. En el capítulo dos se describen los medios experimentales utilizados. Seguidamente, en el capítulo tres, se analizan en detalle las condiciones de referencia del principal túnel aerodinámico utilizado en esta investigación. En el capítulo tres se presentan resultados de ensayos de presión superficial sobre un modelo de la isla. Los principales resultados del experimento de Bolund se reproducen en el capítulo cinco. En el capítulo seis se identifican diferentes estructuras del flujo sobre la isla y, finalmente, en el capitulo siete, se recogen las conclusiones y una propuesta de lineas de trabajo futuras. ABSTRACT The main objective of this work is to contribute to answer the question: to which extend can the wind tunnel testing contribute to determine the flow characteristics that affect the dynamic response of wind turbines operating in highly complex terrains?. This question is not new, indeed, the debate in the scientific community was opened in the first third of the past century and it is still intensely alive. The accepted approach to face this problem consists in analysing a given case study where full-scale tests, computational modelling and wind tunnel testing are applied to the same topography. This is neither easy nor cheap. This is is the reason why since the Askervein experience in 1988, the atmospheric flow modellers community had to wait till 2007 when the Bolund experiment was setup with a deployment of technical means equivalent (considering the evolution of the sensor and computing techniques). The problem is so manifold that both experiences were restricted to neutral conditions without Coriolis effects in order to reduce the complexity. This is the framework in which this PhD has been carried out. The flow topology over the Bolund Island has been studied by replicating the Bolund experiment in the IDR A9 and ACLA16 wind tunnels. Two mock-ups of the Bolund island were manufactured at two scales of 1:230 and 1:115. The in-flow in the empty wind tunnel simulating the incoming atmospheric boundary layer was in the transitionally rough regime and used as a reference case. The 1:230 model was tested in the A9 wind tunnel to measure surface pressure. The mapping of the pressure coefficient across the island gave a visualisation and estimation of a detachment region on the top of the escarpment in front of the island. Time resolved instantaneous pressure measurements illustrated the non-steadiness in the detachment region. The 1:115 model was tested using 3C hot-wires(HW) and 2C Particle Image Velocimetry(PIV). Measurements at met masts M3, M6, M7 and M8 and along Line 270°were taken to replicate the result of the Bolund experiment. The flow was characterised by the speed-up ratio, normalised increment of the turbulent kinetic energy, inclination angle and turning angle. Results along line 270°at heights of 2 m and 5 m compared very well with the full-scale results of the Bolund experiment. Vertical profiles at the met masts showed a significant agreement with the full-scale results. The analysis of the Reynolds stresses and the spectral analysis at the met mast locations gave a varied level of agreement at some locations while clear mismatch at others. The horizontal mapping of the flow field, for a 270°wind direction, allowed to characterise the behaviour of the intermittent recirculation bubble on top of the front escarpment followed by a relaxation region and the presence of a shear layer in the lee side of the island. Further detailed velocity measurements were taken at cross-flow planes over the island to study the flow structures on the island. A longitudinal vortex-like structure with high mean velocity gradients and high turbulent kinetic energy was characterised on the escarpment and evolving downstream. This flow structure is a challenge to the numerical models while posing a threat to wind farm designers when siting wind turbines. Spatial distribution of Reynold stresses were presented from 3C HW and PIV measurements. These values are not common results from usual wind tunnel measurements and very useful for modellers using large eddy simulation (LES). An interpretation of the wind tunnel results in terms of usefulness to wind farm designers is given. Evolution and variation of the flow parameters along measurement lines, planes and surfaces indicated how the flow field could affect wind turbine siting. Different flow properties were presented so compare the level of agreement to full-scale results and how this affected when characterising the site wind classes. The results presented suggest, under certain conditions, the robustness of the wind tunnel testing for studying flow topology over complex terrain and its capability to compare to other modelling techniques especially from the level of agreement between the different data sets presented. Additionally, some flow parameters obtained from wind tunnel measurements would have been quite difficult to be measured at full-scale or by computational means considering the state of the art. This work was carried out as a part of the activities supported by the EC as part of the FP7- PEOPLE-ITN-2008 WAUDIT project (Wind Resource Assessment Audit and Standardization) within the FP7 Marie-Curie Initial Training Network and by the Spanish Ministerio de Economía y Competitividad, within the framework of the ENE2012-36473, TURCO project (Determination of the Spatial Distribution of Statistic Parameters of Flow Turbulence over Complex Topographies in Wind Tunnel) belonging to the Spanish National Program of Research (Subprograma de investigación fundamental no orientada 2012). The report is organised in seven chapters and a collection of annexes. In chapter one, the problem is introduced. In chapter two the experimental setup is described. Following, in chapter three, the inflow conditions of the main wind tunnel used in this piece of research are analysed in detail. In chapter three, preliminary pressure tests results on a model of the island are presented. The main results from the Bolund experiment are replicated in chapter five. In chapter six, an identification of specific flow strutures over the island is presented and, finally, in chapter seven, conclusions and lines for future works related to the presented one are included.
Resumo:
El programa Europeo HORIZON2020 en Futuras Ciudades Inteligentes establece como objetivo que el 20% de la energía eléctrica sea generada a partir de fuentes renovables. Este objetivo implica la necesidad de potenciar la generación de energía eólica en todos los ámbitos. La energía eólica reduce drásticamente las emisiones de gases de efecto invernadero y evita los riesgos geo-políticos asociados al suministro e infraestructuras energéticas, así como la dependencia energética de otras regiones. Además, la generación de energía distribuida (generación en el punto de consumo) presenta significativas ventajas en términos de elevada eficiencia energética y estimulación de la economía. El sector de la edificación representa el 40% del consumo energético total de la Unión Europea. La reducción del consumo energético en este área es, por tanto, una prioridad de acuerdo con los objetivos "20-20-20" en eficiencia energética. La Directiva 2010/31/EU del Parlamento Europeo y del Consejo de 19 de mayo de 2010 sobre el comportamiento energético de edificaciones contempla la instalación de sistemas de suministro energético a partir de fuentes renovables en las edificaciones de nuevo diseño. Actualmente existe una escasez de conocimiento científico y tecnológico acerca de la geometría óptima de las edificaciones para la explotación de la energía eólica en entornos urbanos. El campo tecnológico de estudio de la presente Tesis Doctoral es la generación de energía eólica en entornos urbanos. Específicamente, la optimization de la geometría de las cubiertas de edificaciones desde el punto de vista de la explotación del recurso energético eólico. Debido a que el flujo del viento alrededor de las edificaciones es exhaustivamente investigado en esta Tesis empleando herramientas de simulación numérica, la mecánica de fluidos computacional (CFD en inglés) y la aerodinámica de edificaciones son los campos científicos de estudio. El objetivo central de esta Tesis Doctoral es obtener una geometría de altas prestaciones (u óptima) para la explotación de la energía eólica en cubiertas de edificaciones de gran altura. Este objetivo es alcanzado mediante un análisis exhaustivo de la influencia de la forma de la cubierta del edificio en el flujo del viento desde el punto de vista de la explotación energética del recurso eólico empleando herramientas de simulación numérica (CFD). Adicionalmente, la geometría de la edificación convencional (edificio prismático) es estudiada, y el posicionamiento adecuado para los diferentes tipos de aerogeneradores es propuesto. La compatibilidad entre el aprovechamiento de las energías solar fotovoltaica y eólica también es analizado en este tipo de edificaciones. La investigación prosigue con la optimización de la geometría de la cubierta. La metodología con la que se obtiene la geometría óptima consta de las siguientes etapas: - Verificación de los resultados de las geometrías previamente estudiadas en la literatura. Las geometrías básicas que se someten a examen son: cubierta plana, a dos aguas, inclinada, abovedada y esférica. - Análisis de la influencia de la forma de las aristas de la cubierta sobre el flujo del viento. Esta tarea se lleva a cabo mediante la comparación de los resultados obtenidos para la arista convencional (esquina sencilla) con un parapeto, un voladizo y una esquina curva. - Análisis del acoplamiento entre la cubierta y los cerramientos verticales (paredes) mediante la comparación entre diferentes variaciones de una cubierta esférica en una edificación de gran altura: cubierta esférica estudiada en la literatura, cubierta esférica integrada geométricamente con las paredes (planta cuadrada en el suelo) y una cubierta esférica acoplada a una pared cilindrica. El comportamiento del flujo sobre la cubierta es estudiado también considerando la posibilidad de la variación en la dirección del viento incidente. - Análisis del efecto de las proporciones geométricas del edificio sobre el flujo en la cubierta. - Análisis del efecto de la presencia de edificaciones circundantes sobre el flujo del viento en la cubierta del edificio objetivo. Las contribuciones de la presente Tesis Doctoral pueden resumirse en: - Se demuestra que los modelos de turbulencia RANS obtienen mejores resultados para la simulación del viento alrededor de edificaciones empleando los coeficientes propuestos por Crespo y los propuestos por Bechmann y Sórensen que empleando los coeficientes estándar. - Se demuestra que la estimación de la energía cinética turbulenta del flujo empleando modelos de turbulencia RANS puede ser validada manteniendo el enfoque en la cubierta de la edificación. - Se presenta una nueva modificación del modelo de turbulencia Durbin k — e que reproduce mejor la distancia de recirculación del flujo de acuerdo con los resultados experimentales. - Se demuestra una relación lineal entre la distancia de recirculación en una cubierta plana y el factor constante involucrado en el cálculo de la escala de tiempo de la velocidad turbulenta. Este resultado puede ser empleado por la comunidad científica para la mejora del modelado de la turbulencia en diversas herramientas computacionales (OpenFOAM, Fluent, CFX, etc.). - La compatibilidad entre las energías solar fotovoltaica y eólica en cubiertas de edificaciones es analizada. Se demuestra que la presencia de los módulos solares provoca un descenso en la intensidad de turbulencia. - Se demuestran conflictos en el cambio de escala entre simulaciones de edificaciones a escala real y simulaciones de modelos a escala reducida (túnel de viento). Se demuestra que para respetar las limitaciones de similitud (número de Reynolds) son necesarias mediciones en edificaciones a escala real o experimentos en túneles de viento empleando agua como fluido, especialmente cuando se trata con geometrías complejas, como es el caso de los módulos solares. - Se determina el posicionamiento más adecuado para los diferentes tipos de aerogeneradores tomando en consideración la velocidad e intensidad de turbulencia del flujo. El posicionamiento de aerogeneradores es investigado en las geometrías de cubierta más habituales (plana, a dos aguas, inclinada, abovedada y esférica). - Las formas de aristas más habituales (esquina, parapeto, voladizo y curva) son analizadas, así como su efecto sobre el flujo del viento en la cubierta de un edificio de gran altura desde el punto de vista del aprovechamiento eólico. - Se propone una geometría óptima (o de altas prestaciones) para el aprovechamiento de la energía eólica urbana. Esta optimización incluye: verificación de las geometrías estudiadas en el estado del arte, análisis de la influencia de las aristas de la cubierta en el flujo del viento, estudio del acoplamiento entre la cubierta y las paredes, análisis de sensibilidad del grosor de la cubierta, exploración de la influencia de las proporciones geométricas de la cubierta y el edificio, e investigación del efecto de las edificaciones circundantes (considerando diferentes alturas de los alrededores) sobre el flujo del viento en la cubierta del edificio objetivo. Las investigaciones comprenden el análisis de la velocidad, la energía cinética turbulenta y la intensidad de turbulencia en todos los casos. ABSTRACT The HORIZON2020 European program in Future Smart Cities aims to have 20% of electricity produced by renewable sources. This goal implies the necessity to enhance the wind energy generation, both with large and small wind turbines. Wind energy drastically reduces carbon emissions and avoids geo-political risks associated with supply and infrastructure constraints, as well as energy dependence from other regions. Additionally, distributed energy generation (generation at the consumption site) offers significant benefits in terms of high energy efficiency and stimulation of the economy. The buildings sector represents 40% of the European Union total energy consumption. Reducing energy consumption in this area is therefore a priority under the "20-20-20" objectives on energy efficiency. The Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings aims to consider the installation of renewable energy supply systems in new designed buildings. Nowadays, there is a lack of knowledge about the optimum building shape for urban wind energy exploitation. The technological field of study of the present Thesis is the wind energy generation in urban environments. Specifically, the improvement of the building-roof shape with a focus on the wind energy resource exploitation. Since the wind flow around buildings is exhaustively investigated in this Thesis using numerical simulation tools, both computational fluid dynamics (CFD) and building aerodynamics are the scientific fields of study. The main objective of this Thesis is to obtain an improved (or optimum) shape of a high-rise building for the wind energy exploitation on the roof. To achieve this objective, an analysis of the influence of the building shape on the behaviour of the wind flow on the roof from the point of view of the wind energy exploitation is carried out using numerical simulation tools (CFD). Additionally, the conventional building shape (prismatic) is analysed, and the adequate positions for different kinds of wind turbines are proposed. The compatibility of both photovoltaic-solar and wind energies is also analysed for this kind of buildings. The investigation continues with the buildingroof optimization. The methodology for obtaining the optimum high-rise building roof shape involves the following stages: - Verification of the results of previous building-roof shapes studied in the literature. The basic shapes that are compared are: flat, pitched, shed, vaulted and spheric. - Analysis of the influence of the roof-edge shape on the wind flow. This task is carried out by comparing the results obtained for the conventional edge shape (simple corner) with a railing, a cantilever and a curved edge. - Analysis of the roof-wall coupling by testing different variations of a spherical roof on a high-rise building: spherical roof studied in the litera ture, spherical roof geometrically integrated with the walls (squared-plant) and spherical roof with a cylindrical wall. The flow behaviour on the roof according to the variation of the incident wind direction is commented. - Analysis of the effect of the building aspect ratio on the flow. - Analysis of the surrounding buildings effect on the wind flow on the target building roof. The contributions of the present Thesis can be summarized as follows: - It is demonstrated that RANS turbulence models obtain better results for the wind flow around buildings using the coefficients proposed by Crespo and those proposed by Bechmann and S0rensen than by using the standard ones. - It is demonstrated that RANS turbulence models can be validated for turbulent kinetic energy focusing on building roofs. - A new modification of the Durbin k — e turbulence model is proposed in order to obtain a better agreement of the recirculation distance between CFD simulations and experimental results. - A linear relationship between the recirculation distance on a flat roof and the constant factor involved in the calculation of the turbulence velocity time scale is demonstrated. This discovery can be used by the research community in order to improve the turbulence modeling in different solvers (OpenFOAM, Fluent, CFX, etc.). - The compatibility of both photovoltaic-solar and wind energies on building roofs is demonstrated. A decrease of turbulence intensity due to the presence of the solar panels is demonstrated. - Scaling issues are demonstrated between full-scale buildings and windtunnel reduced-scale models. The necessity of respecting the similitude constraints is demonstrated. Either full-scale measurements or wind-tunnel experiments using water as a medium are needed in order to accurately reproduce the wind flow around buildings, specially when dealing with complex shapes (as solar panels, etc.). - The most adequate position (most adequate roof region) for the different kinds of wind turbines is highlighted attending to both velocity and turbulence intensity. The wind turbine positioning was investigated for the most habitual kind of building-roof shapes (flat, pitched, shed, vaulted and spherical). - The most habitual roof-edge shapes (simple edge, railing, cantilever and curved) were investigated, and their effect on the wind flow on a highrise building roof were analysed from the point of view of the wind energy exploitation. - An optimum building-roof shape is proposed for the urban wind energy exploitation. Such optimization includes: state-of-the-art roof shapes test, analysis of the influence of the roof-edge shape on the wind flow, study of the roof-wall coupling, sensitivity analysis of the roof width, exploration of the aspect ratio of the building-roof shape and investigation of the effect of the neighbouring buildings (considering different surrounding heights) on the wind now on the target building roof. The investigations comprise analysis of velocity, turbulent kinetic energy and turbulence intensity for all the cases.
Resumo:
El sistema de energía eólica-diesel híbrido tiene un gran potencial en la prestación de suministro de energía a comunidades remotas. En comparación con los sistemas tradicionales de diesel, las plantas de energía híbridas ofrecen grandes ventajas tales como el suministro de capacidad de energía extra para "microgrids", reducción de los contaminantes y emisiones de gases de efecto invernadero, y la cobertura del riesgo de aumento inesperado del precio del combustible. El principal objetivo de la presente tesis es proporcionar nuevos conocimientos para la evaluación y optimización de los sistemas de energía híbrido eólico-diesel considerando las incertidumbres. Dado que la energía eólica es una variable estocástica, ésta no puede ser controlada ni predecirse con exactitud. La naturaleza incierta del viento como fuente de energía produce serios problemas tanto para la operación como para la evaluación del valor del sistema de energía eólica-diesel híbrido. Por un lado, la regulación de la potencia inyectada desde las turbinas de viento es una difícil tarea cuando opera el sistema híbrido. Por otro lado, el bene.cio económico de un sistema eólico-diesel híbrido se logra directamente a través de la energía entregada a la red de alimentación de la energía eólica. Consecuentemente, la incertidumbre de los recursos eólicos incrementa la dificultad de estimar los beneficios globales en la etapa de planificación. La principal preocupación del modelo tradicional determinista es no tener en cuenta la incertidumbre futura a la hora de tomar la decisión de operación. Con lo cual, no se prevé las acciones operativas flexibles en respuesta a los escenarios futuros. El análisis del rendimiento y simulación por ordenador en el Proyecto Eólico San Cristóbal demuestra que la incertidumbre sobre la energía eólica, las estrategias de control, almacenamiento de energía, y la curva de potencia de aerogeneradores tienen un impacto significativo sobre el rendimiento del sistema. En la presente tesis, se analiza la relación entre la teoría de valoración de opciones y el proceso de toma de decisiones. La opción real se desarrolla con un modelo y se presenta a través de ejemplos prácticos para evaluar el valor de los sistemas de energía eólica-diesel híbridos. Los resultados muestran que las opciones operacionales pueden aportar un valor adicional para el sistema de energía híbrida, cuando esta flexibilidad operativa se utiliza correctamente. Este marco se puede aplicar en la optimización de la operación a corto plazo teniendo en cuenta la naturaleza dependiente de la trayectoria de la política óptima de despacho, dadas las plausibles futuras realizaciones de la producción de energía eólica. En comparación con los métodos de valoración y optimización existentes, el resultado del caso de estudio numérico muestra que la política de operación resultante del modelo de optimización propuesto presenta una notable actuación en la reducción del con- sumo total de combustible del sistema eólico-diesel. Con el .n de tomar decisiones óptimas, los operadores de plantas de energía y los gestores de éstas no deben centrarse sólo en el resultado directo de cada acción operativa, tampoco deberían tomar decisiones deterministas. La forma correcta es gestionar dinámicamente el sistema de energía teniendo en cuenta el valor futuro condicionado en cada opción frente a la incertidumbre. ABSTRACT Hybrid wind-diesel power systems have a great potential in providing energy supply to remote communities. Compared with the traditional diesel systems, hybrid power plants are providing many advantages such as providing extra energy capacity to the micro-grid, reducing pollution and greenhouse-gas emissions, and hedging the risk of unexpected fuel price increases. This dissertation aims at providing novel insights for assessing and optimizing hybrid wind-diesel power systems considering the related uncertainties. Since wind power can neither be controlled nor accurately predicted, the energy harvested from a wind turbine may be considered a stochastic variable. This uncertain nature of wind energy source results in serious problems for both the operation and value assessment of the hybrid wind-diesel power system. On the one hand, regulating the uncertain power injected from wind turbines is a difficult task when operating the hybrid system. On the other hand, the economic profit of a hybrid wind-diesel system is achieved directly through the energy delivered to the power grid from the wind energy. Therefore, the uncertainty of wind resources has increased the difficulty in estimating the total benefits in the planning stage. The main concern of the traditional deterministic model is that it does not consider the future uncertainty when making the dispatch decision. Thus, it does not provide flexible operational actions in response to the uncertain future scenarios. Performance analysis and computer simulation on the San Cristobal Wind Project demonstrate that the wind power uncertainty, control strategies, energy storage, and the wind turbine power curve have a significant impact on the performance of the system. In this dissertation, the relationship between option pricing theory and decision making process is discussed. A real option model is developed and presented through practical examples for assessing the value of hybrid wind-diesel power systems. Results show that operational options can provide additional value to the hybrid power system when this operational flexibility is correctly utilized. This framework can be applied in optimizing short term dispatch decisions considering the path-dependent nature of the optimal dispatch policy, given the plausible future realizations of the wind power production. Comparing with the existing valuation and optimization methods, result from numerical example shows that the dispatch policy resulting from the proposed optimization model exhibits a remarkable performance in minimizing the total fuel consumption of the wind-diesel system. In order to make optimal decisions, power plant operators and managers should not just focus on the direct outcome of each operational action; neither should they make deterministic decisions. The correct way is to dynamically manage the power system by taking into consideration the conditional future value in each option in response to the uncertainty.
Resumo:
Piotr Omenzetter and Simon Hoell’s work within the Lloyd’s Register Foundation Centre for Safety and Reliability Engineering at the University of Aberdeen is supported by Lloyd’s Register Foundation. The Foundation helps to protect life and property by supporting engineering-related education, public engagement and the application of research.
Resumo:
"DOE/EIS-0006; UC 11, 13, 60."
Resumo:
"February 1983."
Resumo:
"February 1983."
Resumo:
"200/2007"
Resumo:
The PMSG-based wind power generation system protection is presented in this paper. For large-scale systems, a voltagesource converter rectifier is included. Protection circuits for this topology are studied with simulation results for cable permanent fault conditions. These electrical protection methods are all in terms of dumping redundant energy resulting from disrupted path of power delivery. Pitch control of large-scale wind turbines are considered for effectively reducing rotor shaft overspeed. Detailed analysis and calculation of damping power and resistances are presented. Simulation results including fault overcurrent, DC-link overvoltage and wind turbine overspeed are shown to illustrate the system responses under different protection schemes to compare their application and effectiveness.
Resumo:
Summary: Renewable energy is one of the main pillars of sustainable development, especially in developing economies. Increasing energy demand and the limitation of fossil fuel reserves make the use of renewable energy essential for sustainable development. Wind energy is considered to be one of the most important resources of renewable energy. In North African countries, such as Egypt, wind energy has an enormous potential; however, it faces quite a number of technical challenges related to the performance of wind turbines in the Saharan environment. Seasonal sand storms affect the performance of wind turbines in many ways, one of which is increasing the wind turbine aerodynamic resistance through the increase of blade surface roughness. The power loss because of blade surface deterioration is significant in wind turbines. The surface roughness of wind turbine blades deteriorates because of several environmental conditions such as ice or sand. This paper is the first review on the topic of surface roughness effects on the performance of horizontal-axis wind turbines. The review covers the numerical simulation and experimental studies as well as discussing the present research trends to develop a roadmap for better understanding and improvement of wind turbine performance in deleterious environments.
Resumo:
Piotr Omenzetter and Simon Hoell’s work within the Lloyd’s Register Foundation Centre for Safety and Reliability Engineering at the University of Aberdeen is supported by Lloyd’s Register Foundation. The Foundation helps to protect life and property by supporting engineering-related education, public engagement and the application of research.
Resumo:
In this paper, a new open-winding control strategy is proposed for a brushless doubly-fed reluctance generator (BDFRG) applicable for wind turbines. The BDFRG control winding is fed via a dual two-level three-phase converter using a single dc bus. Direct power control based on maximum power point tracking with common mode voltage elimination is designed, which not only the active and reactive power is decoupled, but the reliability and redundancy are all improved greatly by increasing the switching modes of operation, while DC-link voltage and rating of power devices decreased by 50% comparing to the traditional three-level converter systems. Consequently its effectiveness is evaluated by simulation tests based on a 42-kW prototype generator.