928 resultados para Wind farms


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Currently wind power is dominated by onshore wind farms. However, as the demand for power grows driven by security of energy supply issues, dwindling fossil fuel supplies and greenhouse gas emissions reduction targets, offshore wind power will develop rapidly because of the decline of viable onshore sites. The United Kingdom has a target of 21% renewable electricity by 2020 and this is expected to come mostly from wind power. Britain is the most active internationally in terms of offshore wind farm development with almost 48GW in some stage of development. In addition the Scottish Government, the Northern Ireland Executive and the Government of Ireland undertook the 'Irish-Scottish Links on Energy Study' (ISLES), which examined the feasibility of creating an offshore interconnected transmission network and subsea electricity grid based on renewable energy sources off the coast of western Scotland and the Irish Sea. The aim of this paper is to provide an appraisal of offshore wind power development with a focus on the United Kingdom. © 2013 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nowadays, there is a growing environmental concern about were the energy that we use comes from, bringing the att ention on renewable energies. However, the use and trade of renewable e nergies in the market seem to be complicated because of the lack of guara ntees of generation, mainly in the wind farms. The lack of guarantees is usually addressed by using a reserve generation. The aggregation of DG p lants gives place to a new concept: the Virtual Power Producer (VPP). VPPs can reinforce the importance of wind generation technologies, making them valuable in electricity markets. This paper presents some resul ts obtained with a simulation tool (ViProd) developed to support VPPs in the analysis of their operation and management methods and of their strat egies effects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Locating new wind farms is of crucial importance for energy policies of the next decade. To select the new location, an accurate picture of the wind fields is necessary. However, characterizing wind fields is a difficult task, since the phenomenon is highly nonlinear and related to complex topographical features. In this paper, we propose both a nonparametric model to estimate wind speed at different time instants and a procedure to discover underrepresented topographic conditions, where new measuring stations could be added. Compared to space filling techniques, this last approach privileges optimization of the output space, thus locating new potential measuring sites through the uncertainty of the model itself.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Over recent years there has been an increasing deployment of renewable energy generation technologies, particularly large-scale wind farms. As wind farm deployment increases, it is vital to gain a good understanding of how the energy produced is affected by climate variations, over a wide range of time-scales, from short (hours to weeks) to long (months to decades) periods. By relating wind speed at specific sites in the UK to a large-scale climate pattern (the North Atlantic Oscillation or "NAO"), the power generated by a modelled wind turbine under three different NAO states is calculated. It was found that the wind conditions under these NAO states may yield a difference in the mean wind power output of up to 10%. A simple model is used to demonstrate that forecasts of future NAO states can potentially be used to improve month-ahead statistical forecasts of monthly-mean wind power generation. The results confirm that the NAO has a significant impact on the hourly-, daily- and monthly-mean power output distributions from the turbine with important implications for (a) the use of meteorological data (e.g. their relationship to large scale climate patterns) in wind farm site assessment and, (b) the utilisation of seasonal-to-decadal climate forecasts to estimate future wind farm power output. This suggests that further research into the links between large-scale climate variability and wind power generation is both necessary and valuable.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The MATLAB model is contained within the compressed folders (versions are available as .zip and .tgz). This model uses MERRA reanalysis data (>34 years available) to estimate the hourly aggregated wind power generation for a predefined (fixed) distribution of wind farms. A ready made example is included for the wind farm distribution of Great Britain, April 2014 ("CF.dat"). This consists of an hourly time series of GB-total capacity factor spanning the period 1980-2013 inclusive. Given the global nature of reanalysis data, the model can be applied to any specified distribution of wind farms in any region of the world. Users are, however, strongly advised to bear in mind the limitations of reanalysis data when using this model/data. This is discussed in our paper: Cannon, Brayshaw, Methven, Coker, Lenaghan. "Using reanalysis data to quantify extreme wind power generation statistics: a 33 year case study in Great Britain". Submitted to Renewable Energy in March, 2014. Additional information about the model is contained in the model code itself, in the accompanying ReadMe file, and on our website: http://www.met.reading.ac.uk/~energymet/data/Cannon2014/

Relevância:

70.00% 70.00%

Publicador:

Resumo:

With a rapidly increasing fraction of electricity generation being sourced from wind, extreme wind power generation events such as prolonged periods of low (or high) generation and ramps in generation, are a growing concern for the efficient and secure operation of national power systems. As extreme events occur infrequently, long and reliable meteorological records are required to accurately estimate their characteristics. Recent publications have begun to investigate the use of global meteorological “reanalysis” data sets for power system applications, many of which focus on long-term average statistics such as monthly-mean generation. Here we demonstrate that reanalysis data can also be used to estimate the frequency of relatively short-lived extreme events (including ramping on sub-daily time scales). Verification against 328 surface observation stations across the United Kingdom suggests that near-surface wind variability over spatiotemporal scales greater than around 300 km and 6 h can be faithfully reproduced using reanalysis, with no need for costly dynamical downscaling. A case study is presented in which a state-of-the-art, 33 year reanalysis data set (MERRA, from NASA-GMAO), is used to construct an hourly time series of nationally-aggregated wind power generation in Great Britain (GB), assuming a fixed, modern distribution of wind farms. The resultant generation estimates are highly correlated with recorded data from National Grid in the recent period, both for instantaneous hourly values and for variability over time intervals greater than around 6 h. This 33 year time series is then used to quantify the frequency with which different extreme GB-wide wind power generation events occur, as well as their seasonal and inter-annual variability. Several novel insights into the nature of extreme wind power generation events are described, including (i) that the number of prolonged low or high generation events is well approximated by a Poission-like random process, and (ii) whilst in general there is large seasonal variability, the magnitude of the most extreme ramps is similar in both summer and winter. An up-to-date version of the GB case study data as well as the underlying model are freely available for download from our website: http://www.met.reading.ac.uk/~energymet/data/Cannon2014/.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Wind generation's contribution to supporting peak electricity demand is one of the key questions in wind integration studies. Differently from conventional units, the available outputs of different wind farms cannot be approximated as being statistically independent, and hence near-zero wind output is possible across an entire power system. This paper will review the risk model structures currently used to assess wind's capacity value, along with discussion of the resulting data requirements. A central theme is the benefits from performing statistical estimation of the joint distribution for demand and available wind capacity, focusing attention on uncertainties due to limited histories of wind and demand data; examination of Great Britain data from the last 25 years shows that the data requirements are greater than generally thought. A discussion is therefore presented into how analysis of the types of weather system which have historically driven extreme electricity demands can help to deliver robust insights into wind's contribution to supporting demand, even in the face of such data limitations. The role of the form of the probability distribution for available conventional capacity in driving wind capacity credit results is also discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Over the last decade, we have seen a massive increase in the construction of wind farms in northern Fennoscandia. Wind farms comprising hundreds of wind turbines are being built, with little knowledge of the possible cumulative adverse effects on the habitat use and migration of semi-domesticated free-ranging reindeer. We assessed how reindeer responded to wind farm construction in an already fragmented landscape, with specific reference to the effects on use of movement corridors and reindeer habitat selection. We used GPS-data from reindeer during calving and post-calving in the MalAyen reindeer herding community in Sweden. We analysed data from the pre-development years compared to the construction years of two relatively small wind farms. During construction of the wind farms, use of original migration routes and movement corridors within 2 km of development declined by 76 %. This decline in use corresponded to an increase in activity of the reindeer measured by increased step lengths within 0-5 km. The step length was highest nearest the development and declining with distance, as animals moved towards migration corridors and turned around or were observed in holding patterns while not crossing. During construction, reindeer avoided the wind farms at both regional and landscape scale of selection. The combined construction activities associated with even a few wind turbines combined with power lines and roads in or close to central movement corridors caused a reduction in the use of such corridors and grazing habitat and increased the fragmentation of the reindeer calving ranges.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Maine has the highest potential for wind energy in New England and falls within the top twenty states in the nation. It falls just behind Wisconsin and California with an estimate electrical output of 56 billion kWhs. The geological makeup of Maine’s mountains in the western part of the state, and the exposed coastline provide opportune areas to capture wind and convert it into energy. The information included in this poster will suggest the most likely areas for wind development based on a number of factors as recommended by the American Wind Energy Association.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This map shows one option for a viable energy source that is clean, free and endless: wind power. This map shows that the coast of Maine has the potential space and wind speed to be a location for wind farms. Four NOAA buoys placed in different locations along the Maine coast are the source of the wind speed data for this project. The average wind speed of every ten minutes of every day for the year 2004 were averaged so that each buoy was represented by one number of wind speed measured in meters/ second. The values in between these four buoys were estimated, or interpolated, using ArcGIS. Other factors that I took into consideration during this lab were distance from airports (no wind farm can be with in a three mile radius of an airport ) and distance from counties (no one wants an offshore wind farm that obstructs their view). I calculated the most appropriate locations for a wind farm in ArcGIS, by adding these three layers. The final output shows an area along Mt. Desert to be the most appropriate for development.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Constant developments in the field of offshore wind energy have increased the range of water depths at which wind farms are planned to be installed. Therefore, in addition to monopile support structures suitable in shallow waters (up to 30 m), different types of support structures, able to withstand severe sea conditions at the greater water depths, have been developed. For water depths above 30 m, the jacket is one of the preferred support types. Jacket represents a lightweight support structure, which, in combination with complex nature of environmental loads, is prone to highly dynamic behavior. As a consequence, high stresses with great variability in time can be observed in all structural members. The highest concentration of stresses occurs in joints due to their nature (structural discontinuities) and due to the existence of notches along the welds present in the joints. This makes them the weakest elements of the jacket in terms of fatigue. In the numerical modeling of jackets for offshore wind turbines, a reduction of local stresses at the chord-brace joints, and consequently an optimization of the model, can be achieved by implementing joint flexibility in the chord-brace joints. Therefore, in this work, the influence of joint flexibility on the fatigue damage in chord-brace joints of a numerical jacket model, subjected to advanced load simulations, is studied.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In distribution system operations, dispatchers at control center closely monitor system operating limits to ensure system reliability and adequacy. This reliability is partly due to the provision of remote controllable tie and sectionalizing switches. While the stochastic nature of wind generation can impact the level of wind energy penetration in the network, an estimate of the output from wind on hourly basis can be extremely useful. Under any operating conditions, the switching actions require human intervention and can be an extremely stressful task. Currently, handling a set of switching combinations with the uncertainty of distributed wind generation as part of the decision variables has been nonexistent. This thesis proposes a three-fold online management framework: (1) prediction of wind speed, (2) estimation of wind generation capacity, and (3) enumeration of feasible switching combinations. The proposed methodology is evaluated on 29-node test system with 8 remote controllable switches and two wind farms of 18MW and 9MW nameplate capacities respectively for generating the sequence of system reconfiguration states during normal and emergency conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Wind energy has been one of the most growing sectors of the nation’s renewable energy portfolio for the past decade, and the same tendency is being projected for the upcoming years given the aggressive governmental policies for the reduction of fossil fuel dependency. Great technological expectation and outstanding commercial penetration has shown the so called Horizontal Axis Wind Turbines (HAWT) technologies. Given its great acceptance, size evolution of wind turbines over time has increased exponentially. However, safety and economical concerns have emerged as a result of the newly design tendencies for massive scale wind turbine structures presenting high slenderness ratios and complex shapes, typically located in remote areas (e.g. offshore wind farms). In this regard, safety operation requires not only having first-hand information regarding actual structural dynamic conditions under aerodynamic action, but also a deep understanding of the environmental factors in which these multibody rotating structures operate. Given the cyclo-stochastic patterns of the wind loading exerting pressure on a HAWT, a probabilistic framework is appropriate to characterize the risk of failure in terms of resistance and serviceability conditions, at any given time. Furthermore, sources of uncertainty such as material imperfections, buffeting and flutter, aeroelastic damping, gyroscopic effects, turbulence, among others, have pleaded for the use of a more sophisticated mathematical framework that could properly handle all these sources of indetermination. The attainable modeling complexity that arises as a result of these characterizations demands a data-driven experimental validation methodology to calibrate and corroborate the model. For this aim, System Identification (SI) techniques offer a spectrum of well-established numerical methods appropriated for stationary, deterministic, and data-driven numerical schemes, capable of predicting actual dynamic states (eigenrealizations) of traditional time-invariant dynamic systems. As a consequence, it is proposed a modified data-driven SI metric based on the so called Subspace Realization Theory, now adapted for stochastic non-stationary and timevarying systems, as is the case of HAWT’s complex aerodynamics. Simultaneously, this investigation explores the characterization of the turbine loading and response envelopes for critical failure modes of the structural components the wind turbine is made of. In the long run, both aerodynamic framework (theoretical model) and system identification (experimental model) will be merged in a numerical engine formulated as a search algorithm for model updating, also known as Adaptive Simulated Annealing (ASA) process. This iterative engine is based on a set of function minimizations computed by a metric called Modal Assurance Criterion (MAC). In summary, the Thesis is composed of four major parts: (1) development of an analytical aerodynamic framework that predicts interacted wind-structure stochastic loads on wind turbine components; (2) development of a novel tapered-swept-corved Spinning Finite Element (SFE) that includes dampedgyroscopic effects and axial-flexural-torsional coupling; (3) a novel data-driven structural health monitoring (SHM) algorithm via stochastic subspace identification methods; and (4) a numerical search (optimization) engine based on ASA and MAC capable of updating the SFE aerodynamic model.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During recent years, wind energy has moved from an emerging technology to a nearly competitive technology. This fact, coupled with an increasing global focus on environmental concern and a political desire of a certain level of diversification in the energy supply, ensures wind energy an important role in the future electricity market. For this challenge to be met in a cost-efficient way, a substantial part of new wind turbine installations is foreseen to be erected in big onshore or offshore wind farms. This fact makes the production, loading and reliability of turbines operating under such conditions of particular interest.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Wind power time series usually show complex dynamics mainly due to non-linearities related to the wind physics and the power transformation process in wind farms. This article provides an approach to the incorporation of observed local variables (wind speed and direction) to model some of these effects by means of statistical models. To this end, a benchmarking between two different families of varying-coefficient models (regime-switching and conditional parametric models) is carried out. The case of the offshore wind farm of Horns Rev in Denmark has been considered. The analysis is focused on one-step ahead forecasting and a time series resolution of 10 min. It has been found that the local wind direction contributes to model some features of the prevailing winds, such as the impact of the wind direction on the wind variability, whereas the non-linearities related to the power transformation process can be introduced by considering the local wind speed. In both cases, conditional parametric models showed a better performance than the one achieved by the regime-switching strategy. The results attained reinforce the idea that each explanatory variable allows the modelling of different underlying effects in the dynamics of wind power time series.