945 resultados para Wheat rusts.
Resumo:
In the wheatbelt of eastern Australia, rainfall shifts from winter dominated in the south (South Australia, Victoria) to summer dominated in the north (northern New South Wales, southern Queensland). The seasonality of rainfall, together with frost risk, drives the choice of cultivar and sowing date, resulting in a flowering time between October in the south and August in the north. In eastern Australia, crops are therefore exposed to contrasting climatic conditions during the critical period around flowering, which may affect yield potential, and the efficiency in the use of water (WUE) and radiation (RUE). In this work we analysed empirical and simulated data, to identify key climatic drivers of potential water- and radiation-use efficiency, derive a simple climatic index of environmental potentiality, and provide an example of how a simple climatic index could be used to quantify the spatial and temporal variability in resource-use efficiency and potential yield in eastern Australia. Around anthesis, from Horsham to Emerald, median vapour pressure deficit (VPD) increased from 0.92 to 1.28 kPa, average temperature increased from 12.9 to 15.2°C, and the fraction of diffuse radiation (FDR) decreased from 0.61 to 0.41. These spatial gradients in climatic drivers accounted for significant gradients in modelled efficiencies: median transpiration WUE (WUEB/T) increased southwards at a rate of 2.6% per degree latitude and median RUE increased southwards at a rate of 1.1% per degree latitude. Modelled and empirical data confirmed previously established relationships between WUEB/T and VPD, and between RUE and photosynthetically active radiation (PAR) and FDR. Our analysis also revealed a non-causal inverse relationship between VPD and radiation-use efficiency, and a previously unnoticed causal positive relationship between FDR and water-use efficiency. Grain yield (range 1-7 t/ha) measured in field experiments across South Australia, New South Wales, and Queensland (n = 55) was unrelated to the photothermal quotient (Pq = PAR/T) around anthesis, but was significantly associated (r2 = 0.41, P < 0.0001) with newly developed climatic index: a normalised photothermal quotient (NPq = Pq . FDR/VPD). This highlights the importance of diffuse radiation and vapour pressure deficit as sources of variation in yield in eastern Australia. Specific experiments designed to uncouple VPD and FDR and more mechanistic crop models might be required to further disentangle the relationships between efficiencies and climate drivers.
Resumo:
We investigated the influence of rainfall patterns on the water-use efficiency of wheat in a transect between Horsham (36°S) and Emerald (23°S) in eastern Australia. Water-use efficiency was defined in terms of biomass and transpiration, WUEB/T, and grain yield and evapotranspiration, WUEY/ET. Our working hypothesis is that latitudinal trends in WUEY/ET of water-limited crops are the complex result of southward increasing WUEB/T and soil evaporation, and season-dependent trends in harvest index. Our approach included: (a) analysis of long-term records to establish latitudinal gradients of amount, seasonality, and size-structure of rainfall; and (b) modelling wheat development, growth, yield, water budget components, and derived variables including WUEB/T and WUEY/ET. Annual median rainfall declined from around 600 mm in northern locations to 380 mm in the south. Median seasonal rain (from sowing to harvest) doubled between Emerald and Horsham, whereas median off-season rainfall (harvest to sowing) ranged from 460 mm at Emerald to 156 mm at Horsham. The contribution of small events (≤ 5 mm) to seasonal rainfall was negligible at Emerald (median 15 mm) and substantial at Horsham (105 mm). Power law coefficients (τ), i.e. the slopes of the regression between size and number of events in a log-log scale, captured the latitudinal gradient characterised by an increasing dominance of small events from north to south during the growing season. Median modelled WUEB/T increased from 46 kg/ha.mm at Emerald to 73 kg/ha.mm at Horsham, in response to decreasing atmospheric demand. Median modelled soil evaporation during the growing season increased from 70 mm at Emerald to 172 mm at Horsham. This was explained by the size-structure of rainfall characterised with parameter τ, rather than by the total amount of rainfall. Median modelled harvest index ranged from 0.25 to 0.34 across locations, and had a season-dependent latitudinal pattern, i.e. it was greater in northern locations in dry seasons in association with wetter soil profiles at sowing. There was a season-dependent latitudinal pattern in modelled WUEY/ET. In drier seasons, high soil evaporation driven by a very strong dominance of small events, and lower harvest index override the putative advantage of low atmospheric demand and associated higher WUEB/T in southern locations, hence the significant southwards decrease in WUEY/ET. In wetter seasons, when large events contribute a significant proportion of seasonal rain, higher WUEB/T in southern locations may translate into high WUEY/ET. Linear boundary functions (French-Schultz type models) accounting for latitudinal gradients in its parameters, slope, and x-intercept, were fitted to scatter-plots of modelled yield v. evapotranspiration. The x-intercept of the model is re-interpreted in terms of rainfall size structure, and the slope or efficiency multiplier is described in terms of the radiation, temperature, and air humidity properties of the environment. Implications for crop management and breeding are discussed.
Resumo:
Winter cereal cropping is marginal in south-west Queensland because of low and variable rainfall and declining soil fertility. Increasing the soil water storage and the efficiency of water and nitrogen (N) use is essential for sustainable cereal production. The effect of zero tillage and N fertiliser application on these factors was evaluated in wheat and barley from 1996 to 2001 on a grey Vertosol. Annual rainfall was above average in 1996, 1997, 1998 and 1999 and below average in 2000 and 2001. Due to drought, no crop was grown in the 2000 winter cropping season. Zero tillage improved fallow soil water storage by a mean value of 20 mm over 4 years, compared with conventional tillage. However, mean grain yield and gross margin of wheat were similar under conventional and zero tillage. Wheat grain yield and/or grain protein increased with N fertiliser application in all years, resulting in an increase in mean gross margin over 5 years from $86/ha, with no N fertiliser applied, to $250/ha, with N applied to target ≥13% grain protein. A similar increase in gross margin occurred in barley where N fertiliser was applied to target malting grade. The highest N fertiliser application rate in wheat resulted in a residual benefit to soil N supply for the following crop. This study has shown that profitable responses to N fertiliser addition in wheat and barley can be obtained on long-term cultivated Vertosols in south-west Queensland when soil water reserves at sowing are at least 60% of plant available water capacity, or rainfall during the growing season is above average. An integrative benchmark for improved N fertiliser management appears to be the gross margin/water use of ~$1/ha.mm. Greater fallow soil water storage or crop water use efficiency under zero tillage has the potential to improve winter cereal production in drier growing seasons than experienced during the period of this study.
Resumo:
A molecular assay with enhanced specificity and sensitivity has been developed to assist in the surveillance of Karnal bunt, a quarantineable disease with a significant impact on international trade. The protocol involves the release of DNA from spores, PCR amplification to enrich Tilletia-specific templates from released DNA and a five-plex, real-time PCR assay to detect, identify and distinguish T. indica and other Tilletia species (T. walkeri, T. ehrhartae, T. horrida and a group comprising T. caries, T. laevis, T. contraversa, T. bromi and T. fusca) in wheat grains. This fluorescent molecular tool has a detection sensitivity of one spore and thus bypasses the germination step, which in the current protocol is required for confirmation when only a few spores have been found in grain samples. The assay contains five dual-labelled, species-specific probes and associated species-specific primer pairs in a PCR mix in one tube. The different amplification products are detected simultaneously by five different fluorescence spectra. This specific and sensitive assay with reduced labour and reagent requirements makes it an effective and economically sustainable tool to be used in a Karnal bunt surveillance program. This protocol will also be valuable for the identification of some contaminant Tilletia sp. in wheat grains.
Resumo:
While the genetic control of wheat processing characteristics such as dough rheology is well understood, limited information is available concerning the genetic control of baking parameters, particularly sponge and dough (S&D) baking. In this study, a quantitative trait loci (QTL) analysis was performed using a population of doubled haploid lines derived from a cross between Australian cultivars Kukri x Janz grown at sites across different Australian wheat production zones (Queensland in 2001 and 2002 and Southern and Northern New South Wales in 2003) in order to examine the genetic control of protein content, protein expression, dough rheology and sponge and dough baking performance. The study highlighted the inconsistent genetic control of protein content across the test sites, with only two loci (3A and 7A) showing QTL at three of the five sites. Dough rheology QTL were highly consistent across the 5 sites, with major effects associated with the Glu-B1 and Glu-D1 loci. The Glu-D1 5 + 10 allele had consistent effects on S&D properties across sites; however, there was no evidence for a positive effect of the high dough strength Glu-B1-al allele at Glu-B1. A second locus on 5D had positive effects on S&D baking at three of five sites. This study demonstrated that dough rheology measurements were poor predictors of S&D quality. In the absence of robust predictive tests, high heritability values for S&D demonstrate that direct selection is the current best option for achieving genetic gain in this product category.
Resumo:
Pratylenchus thornei is widespread throughout the wheat-growing regions in Australia and overseas and can cause yield losses of up to 70% in some intolerant cultivars. The most effective forms of management of P. thornei populations are crop rotation and plant breeding. There have been no wheat accessions identified as completely resistant to P. thornei, therefore breeding programs have used moderately resistant parents. The objective of the present research was to evaluate 274 Iranian landrace wheats for resistance to P. thornei and identify accessions with resistance superior to the current best resistance source (GS50a). Plants were grown in P. thornei inoculated soil under controlled conditions in a glasshouse pot experiment for 16 weeks. Ninety-two accessions found to be resistant or moderately so were retested in a second experiment. From combined analysis of these experiments, 34 accessions were identified as resistant with reproduction factors (final population per kg soil/initial inoculum rate per kg soil) <= 1. In total, 25 accessions were more resistant than GS50a, with AUS28470 significantly (P < 0.05) more resistant. The resistant Iranian landraces identified in the present study are a valuable untapped genetic pool offering improved levels of P. thornei resistance over current parents in Australian wheat-breeding programs.
Resumo:
The potential of spinosad as a grain protectant for the lesser grain borer, Rhyzopertha dominica, was investigated in a silo-scale trial on wheat stored in Victoria, Australia. Rhyzopertha dominica is a serious pest of stored grain, and its resistance to protectants and the fumigant phosphine is becoming more common. This trial follows earlier laboratory research showing that spinosad may be a useful pest management option for this species. Wheat (300 t) from the 2005 harvest was treated with spinosad 0.96 mg/kg plus chlorpyrifos-methyl 10 mg/kg in March 2006, and samples were collected at intervals during 7.5 month storage to determine efficacy and residues in wheat and milling fractions. Chlorpyrifos-methyl is already registered in Australia for control of several other pest species, and its low potency against R. dominica was confirmed in laboratory-treated wheat. Grain moisture content was stable at about 10%, but grain temperature ranged from 29.3°C in March to 14.0°C in August. Bioassays of all treated wheat samples over 7.5 months resulted in 100% adult mortality after 2 weeks exposure and no live progeny were produced. In addition, no live grain insects were detected during outload sampling after a 9 month storage. Spinosad and chlorpyrifos-methyl residues tended to decline during storage, and residues were higher in the bran layer than in either wholemeal or white flour. This field trial confirmed that spinosad was effective as a grain protectant targeting R. dominica.
Resumo:
The present study set out to test the hypothesis through field and simulation studies that the incorporation of short-term summer legumes, particularly annual legume lablab (Lablab purpureus cv. Highworth), in a fallow-wheat cropping system will improve the overall economic and environmental benefits in south-west Queensland. Replicated, large plot experiments were established at five commercial properties by using their machineries, and two smaller plot experiments were established at two intensively researched sites (Roma and St George). A detailed study on various other biennial and perennial summer forage legumes in rotation with wheat and influenced by phosphorus (P) supply (10 and 40 kg P/ha) was also carried out at the two research sites. The other legumes were lucerne (Medicago sativa), butterfly pea (Clitoria ternatea) and burgundy bean (Macroptilium bracteatum). After legumes, spring wheat (Triticum aestivum) was sown into the legume stubble. The annual lablab produced the highest forage yield, whereas germination, establishment and production of other biennial and perennial legumes were poor, particularly in the red soil at St George. At the commercial sites, only lablab-wheat rotations were experimented, with an increased supply of P in subsurface soil (20 kg P/ha). The lablab grown at the commercial sites yielded between 3 and 6 t/ha forage yield over 2-3 month periods, whereas the following wheat crop with no applied fertiliser yielded between 0.5 to 2.5 t/ha. The wheat following lablab yielded 30% less, on average, than the wheat in a fallow plot, and the profitability of wheat following lablab was slightly higher than that of the wheat following fallow because of greater costs associated with fallow management. The profitability of the lablab-wheat phase was determined after accounting for the input costs and additional costs associated with the management of fallow and in-crop herbicide applications for a fallow-wheat system. The economic and environmental benefits of forage lablab and wheat cropping were also assessed through simulations over a long-term climatic pattern by using economic (PreCAPS) and biophysical (Agricultural Production Systems Simulation, APSIM) decision support models. Analysis of the long-term rainfall pattern (70% in summer and 30% in winter) and simulation studies indicated that ~50% time a wheat crop would not be planted or would fail to produce a profitable crop (grain yield less than 1 t/ha) because of less and unreliable rainfall in winter. Whereas forage lablab in summer would produce a profitable crop, with a forage yield of more than 3 t/ha, ~90% times. Only 14 wheat crops (of 26 growing seasons, i.e. 54%) were profitable, compared with 22 forage lablab (of 25 seasons, i.e. 90%). An opportunistic double-cropping of lablab in summer and wheat in winter is also viable and profitable in 50% of the years. Simulation studies also indicated that an opportunistic lablab-wheat cropping can reduce the potential runoff+drainage by more than 40% in the Roma region, leading to improved economic and environmental benefits.
Resumo:
In this study, we investigated the application of “on-the-go” assessment of wheat protein and moisture under a breeding trial situation.
Resumo:
BACKGROUND: Wheat can be stored for many months before being fumigated with phosphine to kill insects, so a study was undertaken to investigate whether the sorptive capacity of wheat changes as it ages. Wheat was stored at 15 or 25C and 55% RH for up to 5.5 months, and samples were fumigated at intervals to determine sorption. Sealed glass flasks (95% full) were injected with 1.5 mg L-1 of phosphine based on flask volume. Concentrations were monitored for 11 days beginning 2 h after injection. Some wheat samples were refumigated after a period of ventilation. Several fumigations of wheat were conducted to determine the pattern of sorption during the first 24 h. RESULTS: Phosphine concentration declined exponentially with time from 2 h after injection. Rate of sorption decreased with time spent in storage at either 15 or 25C and 55% RH. Rate of sorption tended to be lower when wheat was refumigated, but this could be explained by time in storage rather than by refumigation per se. The data from the 24 h fumigations did not fit a simple exponential decay equation. Instead, there was a rapid decline in the first hour, with phosphine concentration falling much more slowly thereafter. CONCLUSIONS: The results have implications for phosphine fumigation of insects in stored wheat. Both the time wheat has spent in storage and the temperature at which it has been stored are factors that must be considered when trying to understand the impact of sorption on phosphine concentrations in commercial fumigations.
Resumo:
Varying the spatial distribution of applied nitrogen (N) fertilizer to match demand in crops has been shown to increase profits in Australia. Better matching the timing of N inputs to plant requirements has been shown to improve nitrogen use efficiency and crop yields and could reduce nitrous oxide emissions from broad acre grains. Farmers in the wheat production area of south eastern Australia are increasingly splitting N application with the second timing applied at stem elongation (Zadoks 30). Spectral indices have shown the ability to detect crop canopy N status but a robust method using a consistent calibration that functions across seasons has been lacking. One spectral index, the canopy chlorophyll content index (CCCI) designed to detect canopy N using three wavebands along the "red edge" of the spectrum was combined with the canopy nitrogen index (CNI), which was developed to normalize for crop biomass and correct for the N dilution effect of crop canopies. The CCCI-CNI index approach was applied to a 3-year study to develop a single calibration derived from a wheat crop sown in research plots near Horsham, Victoria, Australia. The index was able to predict canopy N (g m-2) from Zadoks 14-37 with an r2 of 0.97 and RMSE of 0.65 g N m-2 when dry weight biomass by area was also considered. We suggest that measures of N estimated from remote methods use N per unit area as the metric and that reference directly to canopy %N is not an appropriate method for estimating plant concentration without first accounting for the N dilution effect. This approach provides a link to crop development rather than creating a purely numerical relationship. The sole biophysical input, biomass, is challenging to quantify robustly via spectral methods. Combining remote sensing with crop modelling could provide a robust method for estimating biomass and therefore a method to estimate canopy N remotely. Future research will explore this and the use of active and passive sensor technologies for use in precision farming for targeted N management.
Resumo:
Resistance to the root-lesion nematode Pratylenchus thornei was sought in wheat from the West Asia and North Africa (WANA) region in the Watkins Collection (148 bread and 139 durum wheat accessions) and the McIntosh Collection (59 bread and 43 durum wheat accessions). It was considered that landraces from this region, encompassing the centres of origin of wheat and where P. thornei also occurs, could be valuable sources of resistance for use in wheat breeding. Resistance was determined by number of P. thornei/kg soil after the growth of the plants in replicated glasshouse experiments. On average, durum accessions produced significantly lower numbers of P. thornei than bread wheat accessions in both the Watkins and McIntosh Collections. Selected accessions with low P. thornei numbers were re-tested and 13 bread wheat and 10 durum accessions were identified with nematode numbers not significantly different from GS50a, a partially resistant bread wheat line used as a reference standard. These resistant accessions, which originated in Iran, Iraq, Syria, Egypt, Sudan, Morocco, and Tunisia, represent a resource of resistance genes in the primary wheat gene pool, which could be used in Australian wheat breeding programs to reduce the economic loss from P. thornei.
Resumo:
Root-lesion nematode (Pratylenchus thornei) significantly reduces wheat yields in the northern Australian grain region. Canola is thought to have a 'biofumigation' potential to control nematodes; therefore, a field experiment was designed to compare canola with other winter crops or clean-fallow for reducing P. thornei population densities and improving growth of P. thornei-intolerant wheat (cv. Batavia) in the following year. Immediately after harvest of the first-year crops, populations of P. thornei were lowest following various canola cultivars or clean-fallow (1957-5200 P. thornei/kg dry soil) and were highest following susceptible wheat cultivars (31 033-41 294/kg dry soil). Unexpectedly, at planting of the second-year wheat crop, nematode populations were at more uniform lower levels (<5000/kg dry soil), irrespective of the previous season's treatment, and remained that way during the growing season, which was quite dry. Growth and grain yield of the second-year wheat crop were poorest on plots previously planted with canola or left fallow due to poor colonisation with arbuscular mycorrhizal (AM) fungi, with the exception of canola cv. Karoo, which had high AM fungal colonisation and low wheat yields. There were significant regressions between growth and yield parameters of the second-year wheat and levels of AMF following the pre-crop treatments. Thus, canola appears to be a good crop for reducing P. thornei populations, but AM fungal-dependence of subsequent crops should be considered, particularly in the northern Australian grain region.
Resumo:
The nitrogen-driven trade-off between nitrogen utilisation efficiency (yield per unit nitrogen uptake) and water use efficiency (yield per unit evapotranspiration) is widespread and results from well established, multiple effects of nitrogen availability on the water, carbon and nitrogen economy of crops. Here we used a crop model (APSIM) to simulate the yield, evapotranspiration, soil evaporation and nitrogen uptake of wheat, and analysed yield responses to water, nitrogen and climate using a framework analogous to the rate-duration model of determinate growth. The relationship between modelled grain yield (Y) and evapotranspiration (ET) was fitted to a linear-plateau function to derive three parameters: maximum yield (Ymax), the ET break-point when yield reaches its maximum (ET#), and the rate of yield response in the linear phase ([Delta]Y/[Delta]ET). Against this framework, we tested the hypothesis that nitrogen deficit reduces maximum yield by reducing both the rate ([Delta]Y/[Delta]ET) and the range of yield response to evapotranspiration, i.e. ET# - Es, where Es is modelled median soil evaporation. Modelled data reproduced the nitrogen-driven trade-off between nitrogen utilisation efficiency and water use efficiency in a transect from Horsham (36°S) to Emerald (23°S) in eastern Australia. Increasing nitrogen supply from 50 to 250 kg N ha-1 reduced yield per unit nitrogen uptake from 29 to 12 kg grain kg-1 N and increased yield per unit evapotranspiration from 6 to 15 kg grain ha-1 mm-1 at Emerald. The same increment in nitrogen supply reduced yield per unit nitrogen uptake from 30 to 25 kg grain kg-1 N and increased yield per unit evapotranspiration from 6 to 25 kg grain ha-1 mm-1 at Horsham. Maximum yield ranged from 0.9 to 6.4 t ha-1. Consistent with our working hypothesis, reductions in maximum yield with nitrogen deficit were associated with both reduction in the rate of yield response to ET and compression of the range of yield response to ET. Against the notion of managing crops to maximise water use efficiency in low rainfall environments, we emphasise the trade-off between water use efficiency and nitrogen utilisation efficiency, particularly under conditions of high nitrogen-to-grain price ratio. The rate-range framework to characterise the relationship between yield and evapotranspiration is useful to capture this trade-off as the parameters were responsive to both nitrogen supply and climatic factors.
Resumo:
A genetic linkage map, based on a cross between the synthetic hexaploid CPI133872 and the bread wheat cultivar Janz, was established using 111 F1-derived doubled haploid lines. The population was phenotyped in multiple years and/or locations for seven disease resistance traits, namely, Septoria tritici blotch (Mycosphaeralla graminicola), yellow leaf spot also known as tan spot (Pyrenophora tritici-repentis), stripe rust (Puccinia striiformis f. sp. tritici), leaf rust (Puccinia triticina), stem rust (Puccinia graminis f. sp. tritici) and two species of root-lesion nematode (Pratylenchyus thornei and P. neglectus). The DH population was also scored for coleoptile colour and the presence of the seedling leaf rust resistance gene Lr24. Implementation of a multiple-QTL model identified a tightly linked cluster of foliar disease resistance QTL in chromosome 3DL. Major QTL each for resistance to Septoria tritici blotch and yellow leaf spot were contributed by the synthetic hexaploid parent CPI133872 and linked in repulsion with the coincident Lr24Sr24/ locus carried by parent Janz. This is the first report of linked QTL for Septoria tritici blotch and yellow leaf spot contributed by the same parent. Additional QTL for yellow leaf spot were detected in 5AS and 5BL. Consistent QTL for stripe rust resistance were identified in chromosomes 1BL, 4BL and 7DS, with the QTL in 7DS corresponding to the Yr18Lr34/ region. Three major QTL for P. thornei resistance (2BS, 6DS, 6DL) and two for P. neglectus resistance (2BS, 6DS) were detected. The recombinants combining resistance to Septoria tritici blotch, yellow leaf spot, rust diseases and root-lesion nematodes from parents CPI133872 and Janz constitute valuable germplasm for the transfer of multiple disease resistance into new wheat cultivars.