180 resultados para Weyl
Resumo:
We develop an approach to the deformation quantization on the real plane with an arbitrary Poisson structure which is based on Weyl symmetrically ordered operator products. By using a polydifferential representation for the deformed coordinates, xj we are able to formulate a simple and effective iterative procedure which allowed us to calculate the fourth-order star product (and may be extended to the fifth order at the expense of tedious but otherwise straightforward calculations). Modulo some cohomology issues which we do not consider here, the method gives an explicit and physics-friendly description of the star products.
Resumo:
We develop and describe continuous and discrete transforms of class functions on a compact semisimple, but not simple, Lie group G as their expansions into series of special functions that are invariant under the action of the even subgroup of the Weyl group of G. We distinguish two cases of even Weyl groups-one is the direct product of even Weyl groups of simple components of G and the second is the full even Weyl group of G. The problem is rather simple in two dimensions. It is much richer in dimensions greater than two-we describe in detail E-transforms of semisimple Lie groups of rank 3.
Resumo:
We introduce a new class of noncommutative rings - Galois orders, realized as certain subrings of invariants in skew semigroup rings, and develop their structure theory. The class of Calms orders generalizes classical orders in noncommutative rings and contains many important examples, such as the Generalized Weyl algebras, the universal enveloping algebra of the general linear Lie algebra, associated Yangians and finite W-algebras (C) 2010 Elsevier Inc All rights reserved
Resumo:
In this work we investigate the relation between the fundamental group of a complete Riemannian manifold M and the quotient between the Weyl group and reflection group of a polar action on M, as well as the relation between the fundamental group of M and the quotient between the lifted Weyl group and lifted reflection group. As applications we give alternative proofs of two results. The first one, due to the author and Toben, implies that a polar action does not admit exceptional orbits, if M is simply connected. The second result, due to Lytchak, implies that the orbits are closed and embedded if M is simply connected. All results are proved in the more general case of polar foliations.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We show that the Einstein-Hilbert, the Einstein-Palatini, and the Holst actions can be derived from the Quadratic Spinor Lagrangian (QSL), when the three classes of Dirac spinor fields, under Lounesto spinor field classification, are considered. To each one of these classes, there corresponds an unique kind of action for a covariant gravity theory. In other words, it is shown to exist a one-to-one correspondence between the three classes of non-equivalent solutions of the Dirac equation, and Einstein-Hilbert, Einstein-Palatini, and Holst actions. Furthermore, it arises naturally, from Lounesto spinor field classification, that any other class of spinor field-Weyl, Majorana, flagpole, or flag-dipole spinor fields-yields a trivial (zero) QSL, up to a boundary term. To investigate this boundary term, we do not impose any constraint on the Dirac spinor field, and consequently we obtain new terms in the boundary component of the QSL. In the particular case of a teleparallel connection, an axial torsion one-form current density is obtained. New terms are also obtained in the corresponding Hamiltonian formalism. We then discuss how these new terms could shed new light on more general investigations.
Resumo:
Following the discussion-in state-space language-presented in a preceding paper, we work on the passage from the phase-space description of a degree of freedom described by a finite number of states (without classical counterpart) to one described by an infinite (and continuously labelled) number of states. With this it is possible to relate an original Schwinger idea to the Pegg-Barnett approach to the phase problem. In phase-space language, this discussion shows that one can obtain the Weyl-Wigner formalism, for both Cartesian and angular coordinates, as limiting elements of the discrete phase-space formalism.
Resumo:
The main aspects of a discrete phase space formalism are presented and the discrete dynamical bracket, suitable for the description of time evolution in finite-dimensional spaces, is discussed. A set of operator bases is defined in such a way that the Weyl-Wigner formalism is shown to be obtained as a limiting case. In the same form, the Moyal bracket is shown to be the limiting case of the discrete dynamical bracket. The dynamics in quantum discrete phase spaces is shown not to be attained from discretization of the continuous case.
Resumo:
Dual-helicity eigenspinors of the charge conjugation operator [eigenspinoren des ladungskonjugationsoperators (ELKO) spinor fields] belong-together with Majorana spinor fields-to a wider class of spinor fields, the so-called flagpole spinor fields, corresponding to the class (5), according to Lounesto spinor field classification based on the relations and values taken by their associated bilinear covariants. There exists only six such disjoint classes: the first three corresponding to Dirac spinor fields, and the other three, respectively, corresponding to flagpole, flag-dipole, and Weyl spinor fields. This paper is devoted to investigate and provide the necessary and sufficient conditions to map Dirac spinor fields to ELKO, in order to naturally extend the standard model to spinor fields possessing mass dimension 1. As ELKO is a prime candidate to describe dark matter, an adequate and necessary formalism is introduced and developed here, to better understand the algebraic, geometric, and physical properties of ELKO spinor fields, and their underlying relationship to Dirac spinor fields. (c) 2007 American Institute of Physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Husserl left many unpublished drafts explaining (or trying to) his views on spatial representation and geometry, such as, particularly, those collected in the second part of Studien zur Arithmetik und Geometrie (Hua XXI), but no completely articulate work on the subject. In this paper, I put forward an interpretation of what those views might have been. Husserl, I claim, distinguished among different conceptions of space, the space of perception (constituted from sensorial data by intentionally motivated psychic functions), that of physical geometry (or idealized perceptual space), the space of the mathematical science of physical nature (in which science, not only raw perception has a word) and the abstract spaces of mathematics (free creations of the mathematical mind), each of them with its peculiar geometrical structure. Perceptual space is proto-Euclidean and the space of physical geometry Euclidean, but mathematical physics, Husserl allowed, may find it convenient to represent physical space with a non-Euclidean structure. Mathematical spaces, on their turn, can be endowed, he thinks, with any geometry mathematicians may find interesting. Many other related questions are addressed here, in particular those concerning the a priori or a posteriori character of the many geometric features of perceptual space (bearing in mind that there are at least two different notions of a priori in Husserl, which we may call the conceptual and the transcendental a priori). I conclude with an overview of Weyl's ideas on the matter, since his philosophical conceptions are often traceable back to his former master, Husserl.
Resumo:
The quasicausal expansion of the quantum Liouville propagator is introduced into the Weyl-Wigner picture. The zeroth-order term is shown to lead to the statistical quasiclassical method of Lee and Scully [J. Chem. Phys. 73, 2238 (1980)].
Resumo:
In this paper we deal with an alternative approach to the description of massless particles of arbitrary spin. Within this scheme chiral components of a spinor field are regarded as fundamental quantities and treated as independent field variables. The free field Lagrangian is built up from the requirement of chiral invariance; This formulation is parallel to the neutrino theory and allows for a formulation that generalizes, to particles of arbitrary spin, the two-component neutrino theory. We achieve a spinor formulation of electrodynamics. In the case of the photon, the nonzero helicity components satisfy Weyl's equations and are associated to observables (electromagnetic fields) whereas the zero helicity components are related to nonobservables (electromagnetic potentials). Within the spinor formulation of electrodynamics the minimal coupling substitution follows as a consequence of the linearity of the interaction and the preference of nature for chiral components, that is, of the left-right asymmetry of nature. (C) 1996 American Institute of Physics.