998 resultados para Water-pipes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to its practical importance and inherent complexity, the optimisation of distribution networks for supplying drinking water has been the subject of extensive study for the past 30 years. The optimization is governed by sizing the pipes in the water distribution network (WDN) and / or optimises specific parts of the network such as pumps, tanks etc. or try to analyse and optimise the reliability of a WDN. In this thesis, the author has analysed two different WDNs (Anytown City and Cabrera city networks), trying to solve and optimise a multi-objective optimisation problem (MOOP). The main two objectives in both cases were the minimisation of Energy Cost (€) or Energy consumption (kWh), along with the total Number of pump switches (TNps) during a day. For this purpose, a decision support system generator for Multi-objective optimisation used. Its name is GANetXL and has been developed by the Center of Water System in the University of Exeter. GANetXL, works by calling the EPANET hydraulic solver, each time a hydraulic analysis has been fulfilled. The main algorithm used, was a second-generation algorithm for multi-objective optimisation called NSGA_II that gave us the Pareto fronts of each configuration. The first experiment that has been carried out was the network of Anytown city. It is a big network with a pump station of four fixed speed parallel pumps that are boosting the water dynamics. The main intervention was to change these pumps to new Variable speed driven pumps (VSDPs), by installing inverters capable to diverse their velocity during the day. Hence, it’s been achieved great Energy and cost savings along with minimisation in the number of pump switches. The results of the research are thoroughly illustrated in chapter 7, with comments and a variety of graphs and different configurations. The second experiment was about the network of Cabrera city. The smaller WDN had a unique FS pump in the system. The problem was the same as far as the optimisation process was concerned, thus, the minimisation of the energy consumption and in parallel the minimisation of TNps. The same optimisation tool has been used (GANetXL).The main scope was to carry out several and different experiments regarding a vast variety of configurations, using different pump (but this time keeping the FS mode), different tank levels, different pipe diameters and different emitters coefficient. All these different modes came up with a large number of results that were compared in the chapter 8. Concluding, it should be said that the optimisation of WDNs is a very interested field that has a vast space of options to deal with. This includes a large number of algorithms to choose from, different techniques and configurations to be made and different support system generators. The researcher has to be ready to “roam” between these choices, till a satisfactory result will convince him/her that has reached a good optimisation point.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In developing countries many water distribution systems are branched networks with little redundancy. If any component in the distribution system fails, many users are left relying on secondary water sources. These sources oftentimes do not provide potable water and prolonged use leads to increased cases of water borne illnesses. Increasing redundancy in branched networks increases the reliability of the networks, but is oftentimes viewed as unaffordable. This paper presents a procedure for water system managers to use to determine which loops when added to a branch network provide the most benefit for users. Two methods are presented, one ranking the loops based on total number of users benefited, and one ranking the loops of number of vulnerable users benefited. A case study is presented using the water distribution system of Medina Bank Village, Belize. It was found that forming loops in upstream pipes connected to the main line had the potential to benefit the most users.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peru is a developing country with abundant fresh water resources, yet the lack of infrastructure leaves much of the population without access to safe water for domestic uses. The author of this report was a Peace Corps Volunteer in the sector of water & sanitation in the district of Independencia, Ica, Peru. Independencia is located in the arid coastal region of the country, receiving on average 15 mm of rain annually. The water source for this district comes from the Pisco River, originating in the Andean highlands and outflowing into the Pacific Ocean near the town of Pisco, Peru. The objectives of this report are to assess the water supply and sanitation practices, model the existing water distribution system, and make recommendations for future expansion of the distribution system in the district of Independencia, Peru. The assessment of water supply will be based on the results from community surveys done in the district of Independencia, water quality testing done by a detachment of the U.S. Navy, as well as on the results of a hydraulic model built in EPANET 2.0 to represent the distribution system. Sanitation practice assessments will be based on the surveys as well as observations from the author while living in Peru. Recommendations for system expansions will be made based on results from the EPANET model and the municipality’s technical report for the existing distribution system. Household water use and sanitation surveys were conducted with 84 families in the district revealing that upwards of 85% store their domestic water in regularly washed containers with lids. Over 80% of those surveyed are drinking water that is treated, mostly boiled. Of those surveyed, over 95% reported washing their hands and over 60% mentioned at least one critical time for hand washing when asked for specific instances. From the surveys, it was also discovered that over 80% of houses are properly disposing of excrement, in either latrines or septic tanks. There were 43 families interviewed with children five years of age or under, and just over 18% reported the child had a case of diarrhea within the last month at the time of the interview. Finally, from the surveys it was calculated that the average water use per person per day is about 22 liters. Water quality testing carried out by a detachment of the U.S. Navy revealed that the water intended for consumption in the houses surveyed was not suitable for consumption, with a median E. coli most probable number of 47/100 ml for the 61 houses sampled. The median total coliforms was 3,000 colony forming units per 100 ml. EPANET was used to simulate the water delivery system and evaluate its performance. EPANET is designed for continuous water delivery systems, assuming all pipes are always flowing full. To account for the intermittent nature of the system, multiple EPANET network models were created to simulate how water is routed to the different parts of the system throughout the day. The models were created from interviews with the water technicians and a map of the system created using handheld GPS units. The purpose is to analyze the performance of the water system that services approximately 13,276 people in the district of Independencia, Peru, as well as provide recommendations for future growth and improvement of the service level. Performance evaluation of the existing system is based on meeting 25 liters per person per day while maintaining positive pressure at all nodes in the network. The future performance is based on meeting a minimum pressure of 20 psi in the main line, as proposed by Chase (2000). The EPANET model results yield an average nodal pressure for all communities of 71 psi, with a range from 1.3 – 160 psi. Thus, if the current water delivery schedule obtained from the local municipality is followed, all communities should have sufficient pressure to deliver 25 l/p/d, with the exception of Los Rosales, which can only supply 3.25 l/p/d. However, if the line to Los Rosales were increased from one to four inches, the system could supply this community with 25 l/p/d. The district of Independencia could greatly benefit from increasing the service level to 24-hour water delivery and a minimum of 50 l/p/d, so that communities without reliable access due to insufficient pressure would become equal beneficiaries of this invaluable resource. To evaluate the feasibility of this, EPANET was used to model the system with a range of population growth rates, system lifetimes, and demands. In order to meet a minimum pressure of 20 psi in the main line, the 6-inch diameter main line must be increased and approximately two miles of trench must be excavated up to 30 feet deep. The sections of the main line that must be excavated are mile 0-1 and 1.5-2.5, and the first 3.4 miles of the main line must be increased from 6 to 16 inches, contracting to 10 inches for the remaining 5.8 miles. Doing this would allow 24-hour water delivery and provide 50 l/p/d for a range of population growth rates and system lifetimes. It is expected that improving the water delivery service would reduce the morbidity and mortality from diarrheal diseases by decreasing the recontamination of the water due to transport and household storage, as well as by maintaining continuous pressure in the system to prevent infiltration of contaminated groundwater. However, this expansion must be carefully planned so as not to affect aquatic ecosystems or other districts utilizing water from the Pisco River. It is recommended that stream gaging of the Pisco River and precipitation monitoring of the surrounding watershed is initiated in order to begin a hydrological study that would be integrated into the district’s water resource planning. It is also recommended that the district begin routine water quality testing, with the results available to the public.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As continued global funding and coordination are allocated toward the improvement of access to safe sources of drinking water, alternative solutions may be necessary to expand implementation to remote communities. This report evaluates two technologies used in a small water distribution system in a mountainous region of Panama; solar powered pumping and flow-reducing discs. The two parts of the system function independently, but were both chosen for their ability to mitigate unique issues in the community. The design program NeatWork and flow-reducing discs were evaluated because they are tools taught to Peace Corps Volunteers in Panama. Even when ample water is available, mountainous terrains affect the pressure available throughout a water distribution system. Since the static head in the system only varies with the height of water in the tank, frictional losses from pipes and fittings must be exploited to balance out the inequalities caused by the uneven terrain. Reducing the maximum allowable flow to connections through the installation of flow-reducing discs can help to retain enough residual pressure in the main distribution lines to provide reliable service to all connections. NeatWork was calibrated to measured flow rates by changing the orifice coefficient (θ), resulting in a value of 0.68, which is 10-15% higher than typical values for manufactured flow-reducing discs. NeatWork was used to model various system configurations to determine if a single-sized flow-reducing disc could provide equitable flow rates throughout an entire system. There is a strong correlation between the optimum single-sized flow- reducing disc and the average elevation change throughout a water distribution system; the larger the elevation change across the system, the smaller the recommended uniform orifice size. Renewable energy can jump the infrastructure gap and provide basic services at a fraction of the cost and time required to install transmission lines. Methods for the assessment of solar powered pumping systems as a means for rural water supply are presented and assessed. It was determined that manufacturer provided product specifications can be used to appropriately design a solar pumping system, but care must be taken to ensure that sufficient water can be provided to the system despite variations in solar intensity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop a simplified model of choked flow in pipes for CO2-water solutions as an important step in the modelling of a whole hydraulic system with the intention of eliminating the carbon dioxide generated in air-independent submarine propulsion. The model is based on an approximate fitting of the homogeneous isentropic solution upstream of a valve (or any other area restriction), for given fluid conditions at the entrance. The relative maximum choking back-pressure is computed as a function of area restriction ratio. Although the procedure is generic for gas solutions, numeric values for the non-dimensional parameters in the analysis are developed only for choking in the case of carbon dioxide solutions up to the pure-water limit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Map of the city of New Orleans : showing proposed water distribution system, [by] Sewerage and Water Board New Orleans, LA.; Geo. G. Earl, genl. sup't. It was published by the Sewerage and Water Board New Orleans in 1902. Scale [ca. 1:50,900]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Louisiana State Plane Coordinate System, South NAD83 (in Feet) (Fipszone 1702). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows water distribution features such as existing and proposed water mains (with sizes), suction pipes, and water purification station sites. Also shows other features such as roads, canals, levees, drainage, cemeteries, Parish boundaries, and more. Shaded to show built-up and unbuilt areas for construction. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yellow, blue, black ink on linen. Drain pipes, topo. lines, walkways, pool. Residence by John S. Van Burgen. Signed. 95 cm. x 67 cm. Scale: 1"=10' [from photographic copy by Lance Burgharrdt]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pencil on tracing paper; location of pipes for entire park; bordered at top by Lake Ave., at left, by Keystone Ave; unsigned;; 98 x 60 cm.; No scale [from photographic copy by Lance Burgharrdt]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identifying water wastage in forms of leaks in a water distribution network of any city becomes essential as droughts are presenting serious threats to few major cities. In this paper, we propose a deployment of sensor network for monitoring water flow in any water distribution network. We cover the issues related with designing such a dedicated sensor network by considering types of sensors required, sensors' functionality, data collection, and providing computation serving as leak detection mechanism. The main focus of this paper is on appropriate network segmentation that provides the base for hierarchical approach to pipes' failure detection. We show a method for sensors allocation to the network in order to facilitate effective pipes monitoring. In general, the identified computational problem belongs to hard problems. The paper shows a heuristic method to build effective hierarchy of the network segmentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The total thermoplastics pipe market in west Europe is estimated at 900,000 metric tonnes for 1977 and is projected to grow to some 1.3 million tonnes of predominantly PVC and polyolefins pipe by 1985. By that time, polyethylene for gas distribution pipe and fittings will represent some 30% of the total polyethylene pipe market. The performance characteristics of a high density polyethylene are significantly influenced by both molecular weight and type of comonomer; the major influences being in the long-term hoop stress resistance and the environmental stress cracking resistance. Minor amounts of hexene-1 are more effective than comonomers lower in the homologous series, although there is some sacrifice of density related properties. A synergistic improvement is obtained by combining molecular weight increase with copolymerisation. The Long-term design strength of polyethylene copolymers can be determined from hoop stress measurement at elevated temperatures and by means of a separation factor of approximate value 22, extrapolation can be made to room temperature performance for a water environment. A polyethylene of black composition has a sufficiently improved performance over yellow pigmented pipe to cast doubts on the validity of internationally specifying yellow coded pipe for gas distribution service. The chemical environment (condensate formation) that can exist in natural gas distribution networks has a deleterious effect on the pipe performance the reduction amounting to at least two decades in log time. Desorption of such condensate is very slow and the influence of the more aggressive aromatic components is to lead to premature stress cracking. For natural gas distribution purposes, the design stress rating should be 39 Kg/cm2 for polyethylenes in the molecular weight range of 150 - 200,000 and 55 Kg/cm2 for higher molecular weight materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis the results of experimental work performed to determine local heat transfer coefficients for non-Newtonian fluids in laminar flow through pipes with abrupt discontinuities are reported. The fluids investigated were water-based polymeric solutiorrs of time-indpendent, pseudoplastic materials, with flow indices "n" ranging from 0.39 to 0.9.The tube configurations were a 3.3 :1 sudden convergence, and a 1: 3.3 sudden divergence.The condition of a prescribed uniform wall heat flux was considered, with both upstream and downstream tube sections heated. Radial temperature traverses were also under­ taken primarily to justify the procedures used in estimating the tube wall and bulk fluid temperatures and secondly to give further insight into the mechanism of heat transfer beyond a sudden tube expansion. A theoretical assessment of the influence of viscous dissipation on a non-Newtonian pseudoplastic fluid of' arbitrary index "n" was carried out. The effects of other secondary factors such as free convection and temperature-dependent consistency were evaluated empirically. In the present investigations, the test conditions were chosen to minimise the effects of natural convection and the estimates of viscous heat generation showed the effect to be insignificant with the polymeric concentrations tested here. The final results have been presented as the relationships between local heat transfer coef'ficient and axial distance downstream of the discontinuities and relationships between dimensionless wall temperature and reduced radius. The influence of Reynolds number, Prandtl number, non-Newtonian index and heat flux have been indicated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel and new thermal management technology for advanced ceramic microelectronic packages has been developed incorporating miniature heat pipes embedded in the ceramic substrate. The heat pipes use an axially grooved wick structure and water as the working fluid. Prototype substrate/heat pipe systems were fabricated using high temperature co-fired ceramic (alumina). The heat pipes were nominally 81 mm in length, 10 mm in width, and 4 mm in height, and were charged with approximately 50–80 μL of water. Platinum thick film heaters were fabricated on the surface of the substrate to simulate heat dissipating electronic components. Several thermocouples were affixed to the substrate to monitor temperature. One end of the substrate was affixed to a heat sink maintained at constant temperature. The prototypes were tested and shown to successful and reliably operate with thermal loads over 20 Watts, with thermal input from single and multiple sources along the surface of the substrate. Temperature distributions are discussed for the various configurations and the effective thermal resistance of the substrate/heat pipe system is calculated. Finite element analysis was used to support the experimental findings and better understand the sources of the system's thermal resistance. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel and new thermal management technology for advanced ceramic microelectronic packages has been developed incorporating miniature heat pipes embedded in the ceramic substrate. The heat pipes use an axially grooved wick structure and water as the working fluid. Prototype substrate/heat pipe systems were fabricated using high temperature co-fired ceramic (alumina). The heat pipes were nominally 81 mm in length, 10 mm in width, and 4 mm in height, and were charged with approximately 50-80 mL of water. Platinum thick film heaters were fabricated on the surface of the substrate to simulate heat dissipating electronic components. Several thermocouples were affixed to the substrate to monitor temperature. One end of the substrate was affixed to a heat sink maintained at constant temperature. The prototypes were tested and shown to successful and reliably operate with thermal loads over 20 Watts, with thermal input from single and multiple sources along the surface of the substrate. Temperature distributions are discussed for the various configurations and the effective thermal resistance of the substrate/heat pipe system is calculated. Finite element analysis was used to support the experimental findings and better understand the sources of the system's thermal resistance.