969 resultados para Water requirements
Resumo:
Many beef producers within the extensive cattle industry of northern Australia attempt to maintain a constant herd size from year-to-year (fixed stocking), whereas others adjust stock numbers to varying degrees annually in response to changes in forage supply. The effects of these strategies on pasture condition and cattle productivity cannot easily be assessed by grazing trials. Simulation studies, which include feedbacks of changes to pasture condition on cattle liveweight gain, can extend the results of grazing trials both spatially and temporally. They can compare a large number of strategies, over long periods of time, for a range of climate periods, at locations which differ markedly in climate. This simulation study compared the pasture condition and cattle productivity achieved by fixed stocking at the long-term carrying capacity with that of 55 flexible stocking strategies at 28 locations across Queensland and the Northern Territory. Flexible stocking strategies differed markedly in the degree they increased or decreased cattle stocking rates after good and poor pasture growing seasons, respectively. The 28 locations covered the full range in average annual rainfall and inter-annual rainfall variability experienced across northern Australia. Constrained flexibility, which limited increases in stocking rates after good growing seasons to 10% but decreased them by up to 20% after poor growing seasons, provides sustainable productivity gains for cattle producers in northern Australia. This strategy can improve pasture condition and increase cattle productivity relative to fixed stocking at the long-term carrying capacity, and its capacity to do this was greatest in the semiarid rangeland regions that contain the majority of beef cattle in northern Australia. More flexible stocking strategies, which also increased stocking rates after good growing seasons by only half as much as they decreased them after poor growing seasons, were equally sustainable and more productive than constrained flexibility, but are often impractical at property and industry scales. Strategies with the highest limits (e.g. 70%) for both annual increases and decreases in stocking rates could achieve higher cattle productivity, but this was at the expense of pasture condition and was not sustainable. Constrained flexible stocking, with a 10% limit for increases and a 20% limit for decreases in stocking rates annually, is a risk-averse adaptation to high and unpredictable rainfall variability for the extensive beef industry of northern Australia. © Australian Rangeland Society 2016.
Resumo:
This thesis studies forming a complete solution concept for tap water systems in project business environment. The aim of the study is to find tools and means for the target company to determine the scope of their tap water solution offering and to research what kind of organizational capabilities and resources are needed to supply such system solutions. With the help of literature, the characteristics of systems selling and project business and thematics of systems integration and integrated solutions are examined, and the significance of modularity and customer requirements in the given operational environment is discussed. After this, a checklist tool for customer requirements management is developed for the tap water system along with a module allocation method. The study proposes that with the checklist and module allocation the technical specifications can be extensively and innovatively defined for the system. The tools developed are a part of a complete tap water solution concept, which suggests that integrated solutions might constitute possibilities for the company to outperform its competitors when the traditional business methods of the industry are becoming obsolete.
Resumo:
Incluye Bibliografía
Resumo:
The research aimed to estimate body contents of protein and energy and net requirements of energy for maintenance of buffaloes, slaughtered at different stages of maturity. There were used 14 Mediterranean intact males with initial average body weight of 352.2 +/- 24.3 kg and average age of 24 months. The animais were randomly divided into four experimental groups. One group was designed to slaughter at the beginning of the experimental period (IS). The animals of another group were restricting fed, receiving, individually, levels of protein and energy 15% above maintenance (RF). The animals of the two remaining groups were individually fed ad libitum (SW450 and SW500) to reach weights corresponding to 100 and 110 percent of the mature weight of the buffalo cows (respectively 450 and 550 kg). The ration contained ground-corn cobs, soybean meal, urea, minerals, and signal-grass (Brachiaria decumbens) hay, with a concentrate: roughage ratio of 50: 50 and 13% of crude protein on a dry matter basis. To estimate changes in body composition inside the range of weights included in the trial, linear regression equations of log protein (kg), fat (kg) and energy (Mcal) as a function of log empty-body-weight (EBW), in kg, were fitted. Energy requirements for maintenance were obtained as estimated heat production at zero level of energy intake. Buffaloes submitted to fattening in feedlot presented early body fat deposition, and had with the same live weight lower protein content and higher fat content and energy per unit weight than european-zebu crossbred cattle.
Resumo:
In 1979, a portion of the research farm was pattern tiled including the large tillage plots. This was used as an opportunity to compare tile installation methods: a conventional trenching machine (used widely prior to late 70s), and a trenchless “tile plow” machine. The tile plow inserted plastic tile using a mole approach, which is the current primary tiling method. This research showed that plow and trenching tiling methods were not significantly different and both provided adequate drainage. It also showed that water table measurements were influenced more by timing of water needs of the crop being grown and intensity of the rainfall event than tiling method. This report focuses on continued research completed on these trial plots from 2009 to 2011 measuring water table level.
Resumo:
"DOE/EV-0116."
Resumo:
Some of the factors affecting colonisation of a colonisation sampler, the Standard Aufwuchs Unit (S. Auf. U.) were investigated, namely immersion period, whether anchored on the bottom or suspended, and the influence of riffles. It was concluded that a four-week immersion period was best. S. Auf. U. anchored on the bottom collected both more taxa and individuals than suspended ones. Fewer taxa but more individuals colonised S. Auf. U. in the potamon zone compared to the rhithron zone with a consequent reduction in the values of pollution indexes and diversity. It was concluded that a completely different scoring system was necessary for lowland rivers. Macroinvertebrates colonising S. Auf. U. in simulated streams, lowland rivers and the R. Churnet reflected water quality. A variety of pollution and diversity indexes were applied to results from lowland river sites. Instead of these, it was recommended that an abbreviated species - relative abundance list be used to summarise biological data for use in lowland river surveillance. An intensive study of gastropod populations was made in simulated streams. Lynnaea peregra increased in abundance whereas Potamopyrgas jenkinsi decreased with increasing sewage effluent concentration. No clear-cut differences in reproduction were observed. The presence/absence of eight gastropod taxa was compared with concentrations of various pollutants in lowland rivers. On the basis of all field work it appeared that ammonia, nitrite, copper and zinc were the toxicants most likely to be detrimental to gastropods and that P. jenkinsi and Theodoxus fluviatilis were the least tolerant taxa. 96h acute toxicity tests of P. jenkinsi using ammonia and copper were carried out in a flow-through system after a variety of static range finding tests. P. jenkinsi was intolerant to both toxicants compared to reports on other taxa and the results suggested that these toxicants would affect distribution of this species in the field.
Resumo:
Body size is a key determinant of metabolic rate, but logistical constraints have led to a paucity of energetics measurements from large water-breathing animals. As a result, estimating energy requirements of large fish generally relies on extrapolation of metabolic rate from individuals of lower body mass using allometric relationships that are notoriously variable. Swim-tunnel respirometry is the ‘gold standard’ for measuring active metabolic rates in water-breathing animals, yet previous data are entirely derived from body masses <10 kg – at least one order of magnitude lower than the body masses of many top-order marine predators. Here, we describe the design and testing of a new method for measuring metabolic rates of large water-breathing animals: a c. 26 000 L seagoing ‘mega-flume’ swim-tunnel respirometer. We measured the swimming metabolic rate of a 2·1-m, 36-kg zebra shark Stegostoma fasciatum within this new mega-flume and compared the results to data we collected from other S. fasciatum (3·8–47·7 kg body mass) swimming in static respirometers and previously published measurements of active metabolic rate measurements from other shark species. The mega-flume performed well during initial tests, with intra- and interspecific comparisons suggesting accurate metabolic rate measurements can be obtained with this new tool. Inclusion of our data showed that the scaling exponent of active metabolic rate with mass for sharks ranging from 0·13 to 47·7 kg was 0·79; a similar value to previous estimates for resting metabolic rates in smaller fishes. We describe the operation and usefulness of this new method in the context of our current uncertainties surrounding energy requirements of large water-breathing animals. We also highlight the sensitivity of mass-extrapolated energetic estimates in large aquatic animals and discuss the consequences for predicting ecosystem impacts such as trophic cascades.
Resumo:
Body size is a key determinant of metabolic rate, but logistical constraints have led to a paucity of energetics measurements from large water-breathing animals. As a result, estimating energy requirements of large fish generally relies on extrapolation of metabolic rate from individuals of lower body mass using allometric relationships that are notoriously variable. Swim-tunnel respirometry is the ‘gold standard’ for measuring active metabolic rates in water-breathing animals, yet previous data are entirely derived from body masses <10 kg – at least one order of magnitude lower than the body masses of many top-order marine predators. Here, we describe the design and testing of a new method for measuring metabolic rates of large water-breathing animals: a c. 26 000 L seagoing ‘mega-flume’ swim-tunnel respirometer. We measured the swimming metabolic rate of a 2·1-m, 36-kg zebra shark Stegostoma fasciatum within this new mega-flume and compared the results to data we collected from other S. fasciatum (3·8–47·7 kg body mass) swimming in static respirometers and previously published measurements of active metabolic rate measurements from other shark species. The mega-flume performed well during initial tests, with intra- and interspecific comparisons suggesting accurate metabolic rate measurements can be obtained with this new tool. Inclusion of our data showed that the scaling exponent of active metabolic rate with mass for sharks ranging from 0·13 to 47·7 kg was 0·79; a similar value to previous estimates for resting metabolic rates in smaller fishes. We describe the operation and usefulness of this new method in the context of our current uncertainties surrounding energy requirements of large water-breathing animals. We also highlight the sensitivity of mass-extrapolated energetic estimates in large aquatic animals and discuss the consequences for predicting ecosystem impacts such as trophic cascades.
Resumo:
Crop evapotranspiration (ETc) was measured as evaporative heat flux from an irrigated acid lime orchard (Citrus latifolia Tanaka) using the aerodynamic method. Crop transpiration (T) was determined by a stem heat balance method. The irrigation requirements were determined by comparing the orchard evapotranspiration (ETc) and T with the reference evapotranspiration (ETo) derived from the Penman-Monteith equation, and the irrigation requirements were expressed as ETc/ETo (Kc) and T/ETo (Kcb) ratios. The influence of inter-row vegetation on the ETc was analyzed because the measurements were taken during the summer and winter, which are periods with different regional soil water content. In this study, the average Mc values obtained were 0.65 and 0.24 for the summer and winter, respectively. The strong coupling of citrus trees to the atmosphere and the sensitivity of citrus plants to large vapor pressure deficits and air/leaf temperatures caused variations in the Kcb in relation to the ETo ranges. During the summer, the Kcb value ranged from 0.34 when the ETo exceeded 5 mm d(-1) to 0.46 when the ETo was less than 3 mm d(-1). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Industry professionals of the near future will be supported by an IT infrastructure that enables them to complete a task by drawing on resources and people with expertise anywhere in the world, and access to knowledge through specific training programs that address the task requirements. The increasing uptake of new technologies enables information to reach a diverse population and to provide flexible learning environments 24 hours a day, 7 days a week. This paper examines one of the key areas where the World Wide Web will impact on the water and wastewater industries, namely technology transfer and training. The authors will present their experiences of developing online training courses for wastewater industry professionals over the last two years. The perspective is that of two people working at the coalface.
Resumo:
The aim of this paper is to develop models for experimental open-channel water delivery systems and assess the use of three data-driven modeling tools toward that end. Water delivery canals are nonlinear dynamical systems and thus should be modeled to meet given operational requirements while capturing all relevant dynamics, including transport delays. Typically, the derivation of first principle models for open-channel systems is based on the use of Saint-Venant equations for shallow water, which is a time-consuming task and demands for specific expertise. The present paper proposes and assesses the use of three data-driven modeling tools: artificial neural networks, composite local linear models and fuzzy systems. The canal from Hydraulics and Canal Control Nucleus (A parts per thousand vora University, Portugal) will be used as a benchmark: The models are identified using data collected from the experimental facility, and then their performances are assessed based on suitable validation criterion. The performance of all models is compared among each other and against the experimental data to show the effectiveness of such tools to capture all significant dynamics within the canal system and, therefore, provide accurate nonlinear models that can be used for simulation or control. The models are available upon request to the authors.