989 resultados para Water harvesting.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Water security which is essential to life and livelihood, health and sanitation, is determined not only by the water resource, but also by the quality of water, the ability to store surplus from precipitation and runoff, as well as access to and affordability of supply. All of these measures have financial implications for national budgets. The water sector in the context of the assessment and discussion on the impact of climate change in this paper includes consideration of the existing as well as the projected available water resource and the demand in terms of: quantity and quality of surface and ground water, water supply infrastructure - collection, storage, treatment, distribution, and potential for adaptation. Wastewater management infrastructure is also considered a component of the water sector. Saint Vincent and the Grenadines has two distinct hydrological regimes: mainland St Vincent is one of the wetter islands of the eastern Caribbean whereas the Grenadines have a drier climate than St Vincent. Surface water is the primary source of water supply on St Vincent, whereas the Grenadines depend on man-made catchments, rainwater harvesting, wells, and desalination. The island state is considered already water stressed as marked seasonality in rainfall, inadequate supply infrastructure, and institutional capacity constrains water supply. Economic modelling approaches were implemented to estimate sectoral demand and supply between 2011 and 2050. Residential, tourism and domestic demand were analysed for the A2, B2 and BAU scenarios. In each of the three scenarios – A2, B2 and BAU Saint Vincent and the Grenadines will have a water gap represented by the difference between the two curves during the forecast period of 2011 and 2050. The amount of water required increases steadily between 2011 and 2050 implying an increasing demand on the country‘s resources as reflected by the fact that the water supply that is available cannot respond adequately to the demand. The Global Water Partnership in its 2005 policy brief suggested that the best way for countries to build the capacity to adapt to climate change will be to improve their ability to cope with today‘s climate variability (GWP, 2005). This suggestion is most applicable for St Vincent and the Grenadines, as the variability being experienced has already placed the island nation under water stress. Strategic priorities should therefore be adopted to increase water production, increase efficiency, strengthen the institutional framework, and decrease wastage. Cost benefit analysis was stymied by data availability, but the ―no-regrets approach‖ which intimates that adaptation measures will be beneficial to the land, people and economy of Saint Vincent and the Grenadines with or without climate change should be adopted.
Resumo:
Among the herbicides recommended for the dry season and registered to sugarcane crop, amicarbazone, isoxaflutole and the association diuron + hexazinone + sulfomethuron-methyl can be highlighted. These are pre-emergence herbicides efficient against broad-leaved weeds. Morning glory causes large losses in infested sugarcane fields by bending the stalks and interfering in harvesting. In this study the effectiveness of pre-emergence herbicides for two species of morning glory (Ipomoea hederifolia and Ipomoea grandifolia) was evaluated. Treatments were arranged in completely randomized factorial design (4 x 7). There were four periods of water restriction (0, 30, 60 and 90 days), seven chemical treatments [diuron + hexazinone + sulfometuron-methyl (1387 + 391 + 33.35 g a.i. ha-1), diuron + hexazinone + sulfometuron-methyl (1507.5 + 425 + 36.25 g a.i. ha-1), diuron + hexazinone + sulfometuron-methyl (1658.25 + 467.5 + 39.87 g a.i. ha-1), diuron + hexazinone + sulfometuronmethyl (1809 + 510 + 43.5 g a.i. ha-1), amicarbazone (1190 g a.i. ha-1), amicarbazone + isoxaflutole (840 + 82.5 g a.i. ha-1)] and a control with no application. At 7, 14, 21 and 28 days after the restoration of moisture, control was visually evaluated. After the final evaluation, the dry mass of morning glories was measured. At 90 days of water restriction, diuron + hexazinone + sulfometuron-methyl was more effective to control I. hederifolia than the amicarbazone + isoxaflutole tank mixture. The four diuron + hexazinone + sulfometuronmethyl doses have reduced morning glory dry mass to zero; whereas treatments with amicarbazone have not. The most effective treatment for morning glory control was diuron + hexazinone + sulfometuron-methyl. This result may be due to a possible synergistic interaction.
Resumo:
The mechanical harvesting is an important stage in the production process of soybeans and, in this process; the loss of a significant number of grains is common. Despite the existence of mechanisms to monitor these losses, it is still essential to use sampling methods to quantify them. Assuming that the size of the sample area affects the reliability and variability between samples in quantifying losses, this paper aimed to analyze the variability and feasibility of using different sizes of sample area (1, 2 and 3 m²) in quantifying losses in the mechanical harvesting of soybeans. Were sampled 36 sites and the cutting losses, losses by other mechanisms of the combine and total losses were evaluated, as well as the water content in seeds, straw distribution and crop productivity. Data were subjected to statistical analysis (descriptive statistics and analysis of variance) and Statistical Control Process (SCP). The coefficients of variation were similar for the three frames available. Combine losses showed stable behavior, whereas cutting losses and total losses showed unstable behavior. The frame size did not affect the quantification and variability of losses in the mechanical harvesting of soybeans, thus a frame of 1 m² can be used for determining losses.
Resumo:
The largest losses in mechanical harvesting of peanuts occur during the stage of digging, and its assessment is still incipient in Brazil. Therefore, the aim of this study was to evaluate the quantitative losses and the performance of the tractor-digger-inverter, according to soil water content and plant populations. The experiment was conducted in a completely randomized block design with a factorial scheme 2 x 3, in which the treatments consisted of two soil, water content (19.3 and 24.8%) and three populations of plants (86,111, 127,603 and 141,144 plants ha-1), with four replications. The quantitative digging losses and the set mechanized performance were evaluated. The largest amount of visible and total losses was found in the population of 141.144 plants ha-1 for the 19.3% soil water content. The harvested material flow and the tractor-digger-inverter performance were not influenced by soil water content and plant population. The water content in the pods was higher in 24.8% soil water content only for the population of 86,111 plants ha-1; the yield was higher in the populations of 141.144 and 127.603 plants ha-1, in the 19.3 e 24.8% soil water content, respectively.
Resumo:
This paper introduces a proposal for reservoir volume calculation in rainwater harvesting systems. The proposed method can be used for reservoir volume design in rainwater harvesting systems and is based on three important variables. These variables are water demand, system efficiency and repayment time. Several simulations were carried out in different scenarios considering typical values of both catchment area (for low-income and medium-income households) and water demand, with fixed water and tank costs. Results showed that the integrated analysis of demand, efficiency and repayment time may assist designers to determine a more adequate reservoir volume.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Three chemical species related to biomass burning, levoglucosan, potassium and water-soluble organic carbon (WSOC), were measured in aerosol samples collected in a rural area on the outskirts of the municipality of Ourinhos (Sao Paulo State, Brazil). This region is representative of the rural interior of the State, where the economy is based on agro-industrial production, and the most important crop is sugar cane. The manual harvesting process requires that the cane be first burned to remove excess foliage, leading to large emissions of particulate materials to the atmosphere. Most of the levoglucosan (68-89%) was present in small particles (<1.5 mu m), and its concentration in total aerosol ranged from 25 to 1186 ng m(-3). The highest values were found at night, when most of the biomass burning occurs. In contrast, WSOC showed no diurnal pattern, with an average concentration of 5.38 +/- 2.97 mu g m(-3) (n = 27). A significant linear correlation between levoglucosan and WSOC (r = 0.54; n = 26; p < 0.0001) confirmed that biomass burning was in fact an important source of WSOC in the study region. A moderate (but significant) linear correlation between levoglucosan and potassium concentrations (r = 0.62; n = 40; p < 0.0001) was indicative of the influence of other sources of potassium in the study region, such as soil resuspension and fertilizers. When only the fine particles (<1.5 pm; typical of biomass burning) were considered, the linear coefficient increased to 0.91 (n = 9). In this case, the average levoglucosan/K+ ratio was 0.24, which may be typical of biomass burning in the study region. This ratio is about 5 times lower than that previously found for Amazon aerosol collected during the day, when flaming combustion prevails. This suggests that the levoglucosan/K+ ratio may be especially helpful for characterization of the type of vegetation burned (such as crops or forest), when biomass-burning is the dominant source of potassium. The relatively high concentrations of WSOC (and inorganic ions) suggest an important influence on the formation of cloud condensation nuclei, which is likely to affect cloud formation and precipitation patterns. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Photosynthetic organisms have sought out the delicate balance between efficient light harvesting under limited irradiance and regulated energy dissipation under excess irradiance. One of the protective mechanisms is the thermal energy dissipation through the xanthophyll cycle that may transform harmlessly the excitation energy into heat and thereby prevent the formation of damaging active oxygen species (AOS). Violaxanthin deepoxidase (VDE) converts violaxanthin (V) to antheraxanthin (A) and zeaxanthin (Z) defending the photosynthetic apparatus from excess of light. Another important biological pathway is the chloroplast water-water cycle, which is referred to the electrons from water generated in PSII reducing atmospheric O2 to water in PSI. This mechanism is active in the scavenging of AOS, when electron transport is slowed down by the over-reduction of NADPH pool. The control of the VDE gene and the variations of a set of physiological parameters, such as chlorophyll florescence and AOS content, have been investigated in response to excess of light and drought condition using Arabidopsis thaliana and Arbutus unedo.. Pigment analysis showed an unambiguous relationship between xanthophyll de-epoxidation state ((A+Z)/(V+A+Z)) and VDE mRNA amount in not-irrigated plants. Unexpectedly, gene expression is higher during the night when xanthophylls are mostly epoxidated and VDE activity is supposed to be very low than during the day. The importance of the water-water cycle in protecting the chloroplasts from light stress has been examined through Arabidopsis plant with a suppressed expression of the key enzyme of the cycle: the thylakoid-attached copper/zinc superoxide dismutase. The analysis revealed changes in transcript expression during leaf development consistent with a signalling role of AOS in plant defence responses but no difference was found any in photosynthesis efficiency or in AOS concentration after short-term exposure to excess of light. Environmental stresses such as drought may render previously optimal light levels excessive. In these circumstances the intrinsic regulations of photosynthetic electron transport like xanthophyll and water-water cycles might modify metabolism and gene expression in order to deal with increasing AOS.
Resumo:
Structure and folding of membrane proteins are important issues in molecular and cell biology. In this work new approaches are developed to characterize the structure of folded, unfolded and partially folded membrane proteins. These approaches combine site-directed spin labeling and pulse EPR techniques. The major plant light harvesting complex LHCIIb was used as a model system. Measurements of longitudinal and transversal relaxation times of electron spins and of hyperfine couplings to neighboring nuclei by electron spin echo envelope modulation(ESEEM) provide complementary information about the local environment of a single spin label. By double electron electron resonance (DEER) distances in the nanometer range between two spin labels can be determined. The results are analyzed in terms of relative water accessibilities of different sites in LHCIIb and its geometry. They reveal conformational changes as a function of micelle composition. This arsenal of methods is used to study protein folding during the LHCIIb self assembly and a spatially and temporally resolved folding model is proposed. The approaches developed here are potentially applicable for studying structure and folding of any protein or other self-assembling structure if site-directed spin labeling is feasible and the time scale of folding is accessible to freeze-quench techniques.
Resumo:
Cyanobacteria are photosynthetic organisms that require the absorption of light for the completion of photosynthesis. Cyanobacteria can use a variety of wavelengths of light within thevisible light spectrum in order to harvest energy for this process. Many species of cyanobacteria have light-harvesting proteins that specialize in the absorption of a small range of wavelengths oflight along the visual light spectrum; others can undergo complementary chromatic adaptation and alter these light-harvesting proteins in order to absorb the wavelengths of light that are mostavailable in a given environment. This variation in light-harvesting phenotype across cyanobacteria leads to the utilization of environmental niches based on light wavelength availability. Furthermore, light attenuation along the water column in an aquatic system also leads to the formation of environmental niches throughout the vertical water column. In order to better understand these niches based on light wavelength availability, we studied the compositionof cyanobacterial genera at the surface and depth of Lake Chillisquaque at three time points throughout the year: September 2009, May 2010, and July 2010. We found that cyanobacterialgenera composition changes throughout the year as well as with physical location in the water column. Additionally, given the light attenuation noted throughout the Lake Chillisquaque, we are able to conclude that light is a major selective factor in the community composition of Lake Chillisquaque.
Resumo:
The efficient collection of solar energy relies on the design and construction of well-organized light-harvesting systems. Herein we report that supramolecular phenanthrene polymers doped with pyrene are effective collectors of light energy. The linear polymers are formed through the assembly of short amphiphilic oligomers in water. Absorption of light by phenanthrene residues is followed by electronic energy transfer along the polymer over long distances (>100 nm) to the accepting pyrene molecules. The high efficiency of the energy transfer, which is documented by large fluorescence quantum yields, suggests a quantum coherent process.
Resumo:
Land rolling of soybean fields has become a popular practice in north central and northwest Iowa during the past five years. Although this technique was first utilized to push rocks into the ground to avoid combine damage and aid in harvesting lodged crops in Canada, producers in Iowa quickly learned that pushing corn root-balls flat at the time of planting and pushing small rocks into the ground can increase harvest efficiency. Typically fields are rolled shortly after planting. One disturbing trend that was noticed, however, was that rolled fields tended to have more water standing between the rows after moderate or heavy rain events. This would imply that water infiltration was slower in fields that had been rolled compared with fields that had not been rolled. Infiltration measurements were taken on a few plots in 2010 at the ISU Northern Research Farm. It seemed that water infiltration was less on the rolled plots. However, we wanted more measurements before publishing any results. In 2011 infiltration measurements were taken on the research farm and on neighboring farms where soybeans had been rolled. The goal was to determine if water infiltration had been reduced by land rolling.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set provides continuous measurements made with a FRRF instrument, operating in a flow-through mode during the 2009-2012 part of the expedition. It operates by exciting chlorophyll fluorescence using a series of short flashes of controlled energy and time intervals (Kolber et al, 1998). The fluorescence transients produced by this excitation signal were analysed in real-time to provide estimates of abundance of photosynthetic pigments, the photosynthetic yields (Fv/Fm), the functional absorption cross section (a proxy for efficiency of photosynthetic energy acquisition), the kinetics of photosynthetic electron transport between Photosystem II and Photosystem I, and the size of the PQ pool. These parameters were measured at excitation wavelength of 445 nm, 470nm, 505 nm, and 535 nm, allowing to assess the presence and the photosynthetic performance of different phytoplankton taxa based on the spectral composition of their light harvesting pigments. The FRRF-derived photosynthetic characteristics were used to calculate the initial slope, the half saturation, and the maximum level of Photosynthesis vs Irradiance relationship. FRRF data were acquired continuously, at 1-minute time intervals.
Resumo:
NADPH:protochlorophyllide oxidoreductase is a key enzyme for the light-induced greening of etiolated angiosperm plants. In barley, two POR proteins exist termed PORA and PORB that have previously been proposed to structurally and functionally cooperate in terms of a higher molecular mass light-harvesting complex named LHPP, in the prolamellar body of etioplasts [Nature 397 (1999) 80]. In this study we examined the expression pattern of LHPP during seedling etiolation and de-etiolation under different experimental conditions. Our results show that LHPP is developmentally expressed across the barley leaf gradient. We further provide evidence that LHPP operates both in plants that etiolate completely before being exposed to white light and in plants that etiolate only partially and begin light-harvesting as soon as traces of light become available in the uppermost parts of the soil. As a result of light absorption, in either case LHPP converts Pchlide a to chlorophyllide (Chlide) a and in turn disintegrates. The released Chlide a, as well as Chlide b produced upon LHPP’s light-dependent dissociation, which leads to the activation of the PORA as a Pchlide b-reducing enzyme, then bind to homologs of water-soluble chlorophyll proteins of Brassicaceae. We propose that these proteins transfer Chlide a and Chlide b to the thylakoids, where their esterification with phytol and assembly into the photosynthetic membrane complexes ultimately takes place. Presumably due to the tight coupling of LHPP synthesis and degradation, as well as WSCP formation and photosynthetic membrane assembly, efficient photo-protection is conferred onto the plant.