998 resultados para Water Microbiology.
Resumo:
Dissertation presented to obtain the Ph.D degree in Engineering and Technology Sciences, Biotechnology.
Resumo:
The present work is focussed mainly on the utilization of this weed-biomass on a biochemical and biotechnological basis. Before designing scientific and systematic utilization of any given biomass, the detailed analysis of its chemical componets is essential. Hence, as the preliminary part of the experimental works, samples of Salvinia were analysed for its chemical constituents.Before designing scientific and systematic utilization of any given biomass, the detailed analysis of its chemical componets is essential .The composition of the substrate contributes much to the nutritive value of mushrooms. Hence, alterations in the nutritive value of mushrooms (in terms of total carbohydrates, proteins, lipids and minerals) in response to Salvinia as substrate were analyzed.Substrate after mushroom harvest (spent substrate) can be utilized for various purposes such as cattle feed, as a source of degradative enzymes, as a substrate for other mushrooms and as garden manure. But studies are limited with regard to the utilization of Pleurotus spent substrate as garden manure. So the value of spent substrate as an organic supplement and its multidimensional impacts on soil chemical status, soil microbial population dynamics and plant growth (Amhurium andreanum) were carried out.Major findings of this work have got much relevance in designing measures to utilize different types of plant biomass, especially aquatic weeds, with the aid of a powerful biological tool, the lignocellulolytic fungus, Pleurorus
Resumo:
Fishes are one of the most important members of the aquatic food chain, and through them some toxicants may reach human beings as well. The selection of organisms for toxicity test is mainly based on certain criteria like its ecological status, position within the food chain, suitability for laboratory studies, genetically stable, uniform populations and adequate background data on the organism (Buikema et al., 1982). The species selected for the present study Etroplus maculatus satisfy most of the above protocols. Rechten (1980) opined it as a laboratory favorite of fish researchers. However, there are difficulties in the rise of fishes for pollution assessment impact. Most important of these is our limited understanding of the mechanism of toxicity. The interpretation of the significance or specificity of a measured biological response could there for become difficult. Not withstanding these limitations, attempts have been made to the normal haematology and to analyze the impact of heavy metal at realistic levels to the experimental media, on the haematology, and enzymatic activity and histology of Etroplus maculatus
Resumo:
Motile aeromonads isolated from the intestines of farm-raised freshwater fish such as Catla catla, Labeo rohita and Ctenopharyngodon idella have been characterized to species level. Morphological and physiological grouping revealed 61% Aeromonas hydrophila, 30% Aeromonas caviae, 7% Aeromonas sobria and 2% which remained unidentified. Hemolytic activity was detected mostly in A. hydrophila, while only half of the A. sobria and A. caviae showed this activity. Antibiotic resistance patterns of the strains revealed that they had acquired a relatively higher resistance to oxytetracycline, amoxycillin, ampicillin, novobiocin and polymixin-B, implicating possible use of these antibiotics in the aquaculture systems.
Resumo:
Microbial degradation is a major determinant of the fate of pollutants in the environment. para-Nitrophenol (PNP) is an EPA listed priority pollutant with a wide environmental distribution, but little is known about the microorganisms that degrade it in the environment. We studied the diversity of active PNP-degrading bacterial populations in river water using a novel functional marker approach coupled with [13C6]PNP stable isotope probing (SIP). Culturing together with culture-independent terminal restriction fragment length polymorphism analysis of 16S rRNA gene amplicons identified Pseudomonas syringae to be the major driver of PNP degradation in river water microcosms. This was confirmed by SIP-pyrosequencing of amplified 16S rRNA. Similarly, functional gene analysis showed that degradation followed the Gram-negative bacterial pathway and involved pnpA from Pseudomonas spp. However, analysis of maleylacetate reductase (encoded by mar), an enzyme common to late stages of both Gram-negative and Gram-positive bacterial PNP degradation pathways, identified a diverse assemblage of bacteria associated with PNP degradation, suggesting that mar has limited use as a specific marker of PNP biodegradation. Both the pnpA and mar genes were detected in a PNP-degrading isolate, P. syringae AKHD2, which was isolated from river water. Our results suggest that PNP-degrading cultures of Pseudomonas spp. are representative of environmental PNP-degrading populations.
Resumo:
Aeromonads are inhabitants of aquatic ecosystems and are described as being involved in intestinal disturbances and other infections. A total of 200 drinking water samples from domestic and public reservoirs and drinking fountains located in Sao Paulo (Brazil), were analyzed for the presence of Aeromonas. Samples were concentrated by membrane filtration and enriched in APW. ADA medium was used for Aeromonas isolation and colonies were confirmed by biochemical characterization. Strains isolated were tested for hemolysin and toxin production. Aeromonas was detected in 12 samples (6.0%). Aeromonas strains (96) were isolated and identified as: A. caviae (41.7%), A. hydrophila (15.7%), A. allosacharophila (10.4%), A. schubertii (1.0%) and Aeromonas spp. (31.2%). The results revealed that 70% of A. caviare, 66.7% of A. hydrophila, 80% of A. allosacharophila and 46.6% of Aeromonas spp. were hemolytic. The assay for checking production of toxins showed that 17.5% of A. caviae, 73.3% of A. hydrophila, 60% of A. allosacharophila, 100% of A. schubertii, and 33.3% of Aeromonas spp. were able to produce toxins. The results demonstrated the pathogenic potential of Aeromonas, indicating that the presence of this emerging pathogen in water systems is a public health concern.
Resumo:
Giardia duodenalis is a protozoan that parasitizes humans and other mammals and causes giardiasis. Although its isolates have been divided into seven assemblages, named A to G, only A and B have been detected in human faeces. Assemblage A isolates are commonly divided into two genotypes, AI and AII. Even though information about the presence of this protozoan in water and sewage is available in Brazil, it is important to verify the distribution of different assemblages that might be present, which can only be done by genotyping techniques. A total of 24 raw and treated sewage, surface and spring water samples were collected, concentrated and purified. DNA was extracted, and a nested PCR was used to amplify an 890 bp fragment of the gdh gene of G. duodenalis, which codes for glutamate dehydrogenase. Positive samples were cloned and sequenced. Ten out of 24 (41.6%) samples were confirmed to be positive for G. duodenalis by sequencing. Phylogenetic analysis grouped most sequences with G. duodenalis genotype AII from GenBank. Only two raw sewage samples presented sequences assigned to assemblage B. In one of these samples genotype AII was also detected. As these assemblages/genotypes are commonly associated to human giardiasis, the contact with these matrices represents risk for public health.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aims: The aim of this study was to identify and determine the diversity, occurrence and distribution of fungi in water used at a haemodialysis centre.Methods and Results: Samples in the hydraulic circuit for the distribution of the water, dialysate samples and samples of sterilization solution from dialysers were collected over a 3-month period, and 500 ml of each sample was filtered through membranes. All together 116 isolates of fungi were recovered from 89% of all water samples collected inside the haemodialysis unit, with prevalence of moulds in tap water samples and of yeasts in dialysate samples. Fusarium spp. was the most abundant genus found, whereas Candida parapsilosis was the predominant yeast species.Conclusions: This study demonstrated that various fungi were present in the water system. These data suggest the inclusion of the detection and quantification of fungi in the water of haemodialysis.Significance and Impact of the Study: The recovery of fungi from aqueous haemodialysis environments implies a potential risk for haemodialysis patients and indicates the need for continuous maintenance and monitoring. Further studies on fungi in haemodialysis water systems are required to investigate the organism ability to persist, their role in biofilm formation and their clinical significance.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Aims: To determine the species, bio-sero-phagetypes, antimicrobial drug resistance and also the pathogenic potential of 144 strains of Yersinia spp. isolated from water sources and sewage in Brazil.Methods and Results: the 144 Yersinia strains were characterized biochemically, serologically and had their antibiotic resistance and phenotypic virulence markers determined by microbiological and serological standard techniques. The Y. enterocolitica strains related to human diseases were also tested for the presence of virulence genes, by the PCR technique. The isolates were classified as Y. enterocolitica, Y. intermedia, Y. frederiksenii, Y. kristensenii and Yersinia biochemically atypical. The 144 isolates belonged to various bio-serogroups. Half of the strains showed resistance to three or more drugs. The Y. enterocolitica strains related to human diseases exhibited phenotypic virulence characteristics and virulence genes.Conclusions: Water from various sources and sewage are contaminated with Yersinia spp. in Brasil. Among these bacteria, virulent strains of Y. enterocolitica were found, with biotypes and serogroups related to human diseases.Significance and Impact of the Study: This is the first documented description of the occurrence of pathogenic Y. enterocolitica in water sources and sewage in Brazil. The occurrence of virulence strains of Y. enterocolitica shows that the environment is a potential source of human infection by this species in this country.
Resumo:
The occurrence of Aeromonas spp., Vibrio cholerae, and Plesiomonas shigelloides in fresh water from various sources in Araraquara, State of São Paulo, Brazil was determined. Samples from ten distinct irrigation systems used in vegetable cultivation, from five distinct streams, from two reservoirs, from one artificial lake, and from three distinct springs were analyzed. All isolates were serotyped and tested for hemolysin, cytotoxin, heat-stable (ST) and heat-labile (LT) enterotoxins production; presence of plasmid; autoagglutination and drug resistance. V. cholerae isolates were also tested for cholera enterotoxin (CT) production, and Aeromonas isolates for suicide phenomenon. No P. shigelloides was found. V. cholerae non 01 was found in five irrigation water samples and in three stream samples. Aeromonas sp. were isolated in two samples of irrigation water, in three streams, and in one reservoir. All the V. cholerae and Aeromonas isolates were positive for P-hemolysin production, and all Aeromonas isolates were positive for suicide phenomenon; cytotoxic activities were observed in two Aeromonas strains. Cholera enterotoxin was not found in eight V. cholerae non-01 isolates tested by the Y-1 mouse adrenal cell. All isolates were also negative for the other virulence markers. Ii cholelerae isolates were found to be sensitive to the majority of drugs tested, while Aeromonas strains presented multiple drug resistance..
Resumo:
Strains belonging to two novel yeast species, Candida bromeliacearum and Candida ubatubensis, were isolated from the bromeliad tank of Canistropsis seidelii (Bromeliaceae) in a sandy coastal plain (restinga) ecosystem site in an Atlantic rainforest of south-eastern Brazil. These species were genetically distinct from all other currently accepted ascomycetous yeasts, based on sequence divergence in the D1/D2 domains of the large-subunit rDNA and in the small-subunit rDNA. The species occupy basal positions in the Metschnikowiaceae clacle. The type strains are Candida bromeliacearum UNESP 00-103(T) (=CBS 10002(T) = NRRL Y-27811(T)) and Candida ubatubensis UNESP 01-247R(T) (=CBS 10003(T) = NRRL Y-27812(T)).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)