79 resultados para WRF
Resumo:
Since its inception in 1946, Iowa State University’s (ISU) Western Research Farm (WRF) has fulfilled its original stated objective of “careful research giving definite answers to specific problems.” In continuing with that tradition, the WRF joined the Onfarm Research Network of the ISU Corn and Soybean Initiative (CSI) and started conducting on-farm trials with participating local producers during the 2010 growing season.
Resumo:
It is commonly understood that the observed decline in precipitation in South-West Australia during the 20th century is caused by anthropogenic factors. Candidates therefore are changes to large-scale atmospheric circulations due to global warming, extensive deforestation and anthropogenic aerosol emissions - all of which are effective on different spatial and temporal scales. This contribution focusses on the role of rapidly rising aerosol emissions from anthropogenic sources in South-West Australia around 1970. An analysis of historical longterm rainfall data of the Bureau of Meteorology shows that South-West Australia as a whole experienced a gradual decline in precipitation over the 20th century. However, on smaller scales and for the particular example of the Perth catchment area, a sudden drop in precipitation around 1970 is apparent. Modelling experiments at a convection-resolving resolution of 3.3km using the Weather and Research Forecasting (WRF) model version 3.6.1 with the aerosol-aware Thompson-Eidhammer microphysics scheme are conducted for the period 1970-1974. A comparison of four runs with different prescribed aerosol emissions and without aerosol effects demonstrates that tripling the pre-1960s atmospheric CCN and IN concentrations can suppress precipitation by 2-9%, depending on the area and the season. This suggests that a combination of all three processes is required to account for the gradual decline in rainfall seen for greater South-West Australia and for the sudden drop observed in areas along the West Coast in the 1970s: changing atmospheric circulations, deforestation and anthropogenic aerosol emissions.
Resumo:
This paper describes the design and application of the Atmospheric Evaluation and Research Integrated model for Spain (AERIS). Currently, AERIS can provide concentration profiles of NO2, O3, SO2, NH3, PM, as a response to emission variations of relevant sectors in Spain. Results are calculated using transfer matrices based on an air quality modelling system (AQMS) composed by the WRF (meteorology), SMOKE (emissions) and CMAQ (atmospheric-chemical processes) models. The AERIS outputs were statistically tested against the conventional AQMS and observations, revealing a good agreement in both cases. At the moment, integrated assessment in AERIS focuses only on the link between emissions and concentrations. The quantification of deposition, impacts (health, ecosystems) and costs will be introduced in the future. In conclusion, the main asset of AERIS is its accuracy in predicting air quality outcomes for different scenarios through a simple yet robust modelling framework, avoiding complex programming and long computing times.
Resumo:
As environmental standards become more stringent (e.g. European Directive 2008/50/EC), more reliable and sophisticated modeling tools are needed to simulate measures and plans that may effectively tackle air quality exceedances, common in large cities across Europe, particularly for NO2. Modeling air quality in urban areas is rather complex since observed concentration values are a consequence of the interaction of multiple sources and processes that involve a wide range of spatial and temporal scales. Besides a consistent and robust multi-scale modeling system, comprehensive and flexible emission inventories are needed. This paper discusses the application of the WRF-SMOKE-CMAQ system to the Madrid city (Spain) to assess the contribution of the main emitting sectors in the region. A detailed emission inventory was compiled for this purpose. This inventory relies on bottom-up methods for the most important sources. It is coupled with the regional traffic model and it makes use of an extensive database of industrial, commercial and residential combustion plants. Less relevant sources are downscaled from national or regional inventories. This paper reports the methodology and main results of the source apportionment study performed to understand the origin of pollution (main sectors and geographical areas) and define clear targets for the abatement strategy. Finally the structure of the air quality monitoring is analyzed and discussed to identify options to improve the monitoring strategy not only in the Madrid city but the whole metropolitan area.
Resumo:
La mejora de la calidad del aire es una tarea eminentemente interdisciplinaria. Dada la gran variedad de ciencias y partes involucradas, dicha mejora requiere de herramientas de evaluación simples y completamente integradas. La modelización para la evaluación integrada (integrated assessment modeling) ha demostrado ser una solución adecuada para la descripción de los sistemas de contaminación atmosférica puesto que considera cada una de las etapas involucradas: emisiones, química y dispersión atmosférica, impactos ambientales asociados y potencial de disminución. Varios modelos de evaluación integrada ya están disponibles a escala continental, cubriendo cada una de las etapas antesmencionadas, siendo el modelo GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) el más reconocido y usado en el contexto europeo de toma de decisiones medioambientales. Sin embargo, el manejo de la calidad del aire a escala nacional/regional dentro del marco de la evaluación integrada es deseable. Esto sin embargo, no se lleva a cabo de manera satisfactoria con modelos a escala europea debido a la falta de resolución espacial o de detalle en los datos auxiliares, principalmente los inventarios de emisión y los patrones meteorológicos, entre otros. El objetivo de esta tesis es presentar los desarrollos en el diseño y aplicación de un modelo de evaluación integrada especialmente concebido para España y Portugal. El modelo AERIS (Atmospheric Evaluation and Research Integrated system for Spain) es capaz de cuantificar perfiles de concentración para varios contaminantes (NO2, SO2, PM10, PM2,5, NH3 y O3), el depósito atmosférico de especies de azufre y nitrógeno así como sus impactos en cultivos, vegetación, ecosistemas y salud como respuesta a cambios porcentuales en las emisiones de sectores relevantes. La versión actual de AERIS considera 20 sectores de emisión, ya sea equivalentes a sectores individuales SNAP o macrosectores, cuya contribución a los niveles de calidad del aire, depósito e impactos han sido modelados a través de matrices fuentereceptor (SRMs). Estas matrices son constantes de proporcionalidad que relacionan cambios en emisiones con diferentes indicadores de calidad del aire y han sido obtenidas a través de parametrizaciones estadísticas de un modelo de calidad del aire (AQM). Para el caso concreto de AERIS, su modelo de calidad del aire “de origen” consistió en el modelo WRF para la meteorología y en el modelo CMAQ para los procesos químico-atmosféricos. La cuantificación del depósito atmosférico, de los impactos en ecosistemas, cultivos, vegetación y salud humana se ha realizado siguiendo las metodologías estándar establecidas bajo los marcos internacionales de negociación, tales como CLRTAP. La estructura de programación está basada en MATLAB®, permitiendo gran compatibilidad con software típico de escritorio comoMicrosoft Excel® o ArcGIS®. En relación con los niveles de calidad del aire, AERIS es capaz de proveer datos de media anual y media mensual, así como el 19o valor horario más alto paraNO2, el 25o valor horario y el 4o valor diario más altos para SO2, el 36o valor diario más alto para PM10, el 26o valor octohorario más alto, SOMO35 y AOT40 para O3. En relación al depósito atmosférico, el depósito acumulado anual por unidad de area de especies de nitrógeno oxidado y reducido al igual que de azufre pueden ser determinados. Cuando los valores anteriormente mencionados se relacionan con características del dominio modelado tales como uso de suelo, cubiertas vegetales y forestales, censos poblacionales o estudios epidemiológicos, un gran número de impactos puede ser calculado. Centrándose en los impactos a ecosistemas y suelos, AERIS es capaz de estimar las superaciones de cargas críticas y las superaciones medias acumuladas para especies de nitrógeno y azufre. Los daños a bosques se calculan como una superación de los niveles críticos de NO2 y SO2 establecidos. Además, AERIS es capaz de cuantificar daños causados por O3 y SO2 en vid, maíz, patata, arroz, girasol, tabaco, tomate, sandía y trigo. Los impactos en salud humana han sido modelados como consecuencia de la exposición a PM2,5 y O3 y cuantificados como pérdidas en la esperanza de vida estadística e indicadores de mortalidad prematura. La exactitud del modelo de evaluación integrada ha sido contrastada estadísticamente con los resultados obtenidos por el modelo de calidad del aire convencional, exhibiendo en la mayoría de los casos un buen nivel de correspondencia. Debido a que la cuantificación de los impactos no es llevada a cabo directamente por el modelo de calidad del aire, un análisis de credibilidad ha sido realizado mediante la comparación de los resultados de AERIS con los de GAINS para un escenario de emisiones determinado. El análisis reveló un buen nivel de correspondencia en las medias y en las distribuciones probabilísticas de los conjuntos de datos. Las pruebas de verificación que fueron aplicadas a AERIS sugieren que los resultados son suficientemente consistentes para ser considerados como razonables y realistas. En conclusión, la principal motivación para la creación del modelo fue el producir una herramienta confiable y a la vez simple para el soporte de las partes involucradas en la toma de decisiones, de cara a analizar diferentes escenarios “y si” con un bajo coste computacional. La interacción con políticos y otros actores dictó encontrar un compromiso entre la complejidad del modeladomedioambiental con el carácter conciso de las políticas, siendo esto algo que AERIS refleja en sus estructuras conceptual y computacional. Finalmente, cabe decir que AERIS ha sido creado para su uso exclusivo dentro de un marco de evaluación y de ninguna manera debe ser considerado como un sustituto de los modelos de calidad del aire ordinarios. ABSTRACT Improving air quality is an eminently inter-disciplinary task. The wide variety of sciences and stakeholders that are involved call for having simple yet fully-integrated and reliable evaluation tools available. Integrated AssessmentModeling has proved to be a suitable solution for the description of air pollution systems due to the fact that it considers each of the involved stages: emissions, atmospheric chemistry, dispersion, environmental impacts and abatement potentials. Some integrated assessment models are available at European scale that cover each of the before mentioned stages, being the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model the most recognized and widely-used within a European policy-making context. However, addressing air quality at the national/regional scale under an integrated assessment framework is desirable. To do so, European-scale models do not provide enough spatial resolution or detail in their ancillary data sources, mainly emission inventories and local meteorology patterns as well as associated results. The objective of this dissertation is to present the developments in the design and application of an Integrated Assessment Model especially conceived for Spain and Portugal. The Atmospheric Evaluation and Research Integrated system for Spain (AERIS) is able to quantify concentration profiles for several pollutants (NO2, SO2, PM10, PM2.5, NH3 and O3), the atmospheric deposition of sulfur and nitrogen species and their related impacts on crops, vegetation, ecosystems and health as a response to percentual changes in the emissions of relevant sectors. The current version of AERIS considers 20 emission sectors, either corresponding to individual SNAP sectors or macrosectors, whose contribution to air quality levels, deposition and impacts have been modeled through the use of source-receptor matrices (SRMs). Thesematrices are proportionality constants that relate emission changes with different air quality indicators and have been derived through statistical parameterizations of an air qualitymodeling system (AQM). For the concrete case of AERIS, its parent AQM relied on the WRF model for meteorology and on the CMAQ model for atmospheric chemical processes. The quantification of atmospheric deposition, impacts on ecosystems, crops, vegetation and human health has been carried out following the standard methodologies established under international negotiation frameworks such as CLRTAP. The programming structure isMATLAB ® -based, allowing great compatibility with typical software such as Microsoft Excel ® or ArcGIS ® Regarding air quality levels, AERIS is able to provide mean annual andmean monthly concentration values, as well as the indicators established in Directive 2008/50/EC, namely the 19th highest hourly value for NO2, the 25th highest daily value and the 4th highest hourly value for SO2, the 36th highest daily value of PM10, the 26th highest maximum 8-hour daily value, SOMO35 and AOT40 for O3. Regarding atmospheric deposition, the annual accumulated deposition per unit of area of species of oxidized and reduced nitrogen as well as sulfur can be estimated. When relating the before mentioned values with specific characteristics of the modeling domain such as land use, forest and crops covers, population counts and epidemiological studies, a wide array of impacts can be calculated. When focusing on impacts on ecosystems and soils, AERIS is able to estimate critical load exceedances and accumulated average exceedances for nitrogen and sulfur species. Damage on forests is estimated as an exceedance of established critical levels of NO2 and SO2. Additionally, AERIS is able to quantify damage caused by O3 and SO2 on grapes, maize, potato, rice, sunflower, tobacco, tomato, watermelon and wheat. Impacts on human health aremodeled as a consequence of exposure to PM2.5 and O3 and quantified as losses in statistical life expectancy and premature mortality indicators. The accuracy of the IAM has been tested by statistically contrasting the obtained results with those yielded by the conventional AQM, exhibiting in most cases a good agreement level. Due to the fact that impacts cannot be directly produced by the AQM, a credibility analysis was carried out for the outputs of AERIS for a given emission scenario by comparing them through probability tests against the performance of GAINS for the same scenario. This analysis revealed a good correspondence in the mean behavior and the probabilistic distributions of the datasets. The verification tests that were applied to AERIS suggest that results are consistent enough to be credited as reasonable and realistic. In conclusion, the main reason thatmotivated the creation of this model was to produce a reliable yet simple screening tool that would provide decision and policy making support for different “what-if” scenarios at a low computing cost. The interaction with politicians and other stakeholders dictated that reconciling the complexity of modeling with the conciseness of policies should be reflected by AERIS in both, its conceptual and computational structures. It should be noted however, that AERIS has been created under a policy-driven framework and by no means should be considered as a substitute of the ordinary AQM.
Resumo:
The triggering mechanism and the temporal evolution of large flood events, especially of worst-case scenarios, are not yet fully understood. Consequently, the cumulative losses of extreme floods are unknown. To study the link between weather conditions, discharges and flood losses it is necessary to couple atmospheric, hydrological, hydrodynamic and damage models. The objective of the M-AARE project is to test the potentials and opportunities of a model chain that relates atmospheric conditions to flood losses or risks. The M-AARE model chain is a set of coupled models consisting of four main components: the precipitation module, the hydrology module, the hydrodynamic module, and the damage module. The models are coupled in a cascading framework with harmonized time-steps. First exploratory applications show that the one way coupling of the WRF-PREVAH-BASEMENT models has been achieved and provides promising new insights for a better understanding of key aspects in flood risk analysis.
Resumo:
Climatic changes are most pronounced in northern high latitude regions. Yet, there is a paucity of observational data, both spatially and temporally, such that regional-scale dynamics are not fully captured, limiting our ability to make reliable projections. In this study, a group of dynamical downscaling products were created for the period 1950 to 2100 to better understand climate change and its impacts on hydrology, permafrost, and ecosystems at a resolution suitable for northern Alaska. An ERA-interim reanalysis dataset and the Community Earth System Model (CESM) served as the forcing mechanisms in this dynamical downscaling framework, and the Weather Research & Forecast (WRF) model, embedded with an optimization for the Arctic (Polar WRF), served as the Regional Climate Model (RCM). This downscaled output consists of multiple climatic variables (precipitation, temperature, wind speed, dew point temperature, and surface air pressure) for a 10 km grid spacing at three-hour intervals. The modeling products were evaluated and calibrated using a bias-correction approach. The ERA-interim forced WRF (ERA-WRF) produced reasonable climatic variables as a result, yielding a more closely correlated temperature field than precipitation field when long-term monthly climatology was compared with its forcing and observational data. A linear scaling method then further corrected the bias, based on ERA-interim monthly climatology, and bias-corrected ERA-WRF fields were applied as a reference for calibration of both the historical and the projected CESM forced WRF (CESM-WRF) products. Biases, such as, a cold temperature bias during summer and a warm temperature bias during winter as well as a wet bias for annual precipitation that CESM holds over northern Alaska persisted in CESM-WRF runs. The linear scaling of CESM-WRF eventually produced high-resolution downscaling products for the Alaskan North Slope for hydrological and ecological research, together with the calibrated ERA-WRF run, and its capability extends far beyond that. Other climatic research has been proposed, including exploration of historical and projected climatic extreme events and their possible connections to low-frequency sea-atmospheric oscillations, as well as near-surface permafrost degradation and ice regime shifts of lakes. These dynamically downscaled, bias corrected climatic datasets provide improved spatial and temporal resolution data necessary for ongoing modeling efforts in northern Alaska focused on reconstructing and projecting hydrologic changes, ecosystem processes and responses, and permafrost thermal regimes. The dynamical downscaling methods presented in this study can also be used to create more suitable model input datasets for other sub-regions of the Arctic.
Resumo:
The objective of this study was to determine the seasonal and interannual variability and calculate the trends of wind speed in NEB and then validate the mesoscale numerical model for after engage with the microscale numerical model in order to get the wind resource at some locations in the NEB. For this we use two data sets of wind speed (weather stations and anemometric towers) and two dynamic models; one of mesoscale and another of microscale. We use statistical tools to evaluate and validate the data obtained. The simulations of the dynamic mesoscale model were made using data assimilation methods (Newtonian Relaxation and Kalman filter). The main results show: (i) Five homogeneous groups of wind speed in the NEB with higher values in winter and spring and with lower in summer and fall; (ii) The interannual variability of the wind speed in some groups stood out with higher values; (iii) The large-scale circulation modified by the El Niño and La Niña intensified wind speed for the groups with higher values; (iv) The trend analysis showed more significant negative values for G3, G4 and G5 in all seasons and in the annual average; (v) The performance of dynamic mesoscale model showed smaller errors in the locations Paracuru and São João and major errors were observed in Triunfo; (vi) Application of the Kalman filter significantly reduce the systematic errors shown in the simulations of the dynamic mesoscale model; (vii) The wind resource indicate that Paracuru and Triunfo are favorable areas for the generation of energy, and the coupling technique after validation showed better results for Paracuru. We conclude that the objective was achieved, making it possible to identify trends in homogeneous groups of wind behavior, and to evaluate the quality of both simulations with the dynamic model of mesoscale and microscale to answer questions as necessary before planning research projects in Wind-Energy area in the NEB
Resumo:
Lo scopo di questo studio è la comprensione della dinamica dello strato limite urbano per città dell’Emilia Romagna tramite simulazioni numeriche. In particolare, l’attenzione è posta sull’ effetto isola di calore, ovvero sulla differenza di temperatura dell’aria in prossimità del suolo fra zone rurali e urbane dovuta all’urbanizzazione. Le simulazioni sono state effettuate con il modello alla mesoscala "Weather Research and Forecasting" (WRF), accoppiato con le parametrizzazioni urbane "Building Effect Parametrization" (BEP) e "Building Energy Model" (BEM), che agiscono a vari livelli verticali urbani. Il periodo di studio riguarda sei giorni caldi e senza copertura nuvolosa durante un periodo di heat wave dell’anno 2015. La copertura urbana è stata definita con il "World Urban Databes and Access Portal Tools" (WUDAPT), un metodo che permette di classificare le aree urbane in dieci "urban climate zones" (UCZ), attraverso l’uso combinato di immagini satellitari e "training areas" manualmente definite con il software Google Earth. Sono state svolte diverse simulazioni a domini innestati, con risoluzione per il dominio più piccolo di 500 m, centrato sulla città di Bologna. Le differenze fra le simulazioni riguardano la presenza o l’assenza delle strutture urbane, il metodo di innesto e tipo di vegetazione rurale. Inoltre, è stato valutato l’effetto dovuto alla presenza di pannelli fotovoltaici sopra i tetti di ogni edificio e le variazioni che i pannelli esercitano sullo strato limite urbano. Per verificare la bontà del modello, i dati provenienti dalle simulazioni sono stati confrontati con misure provenienti da 41 stazioni all’interno dell’area di studio. Le variabili confrontate sono: temperatura, umidità relativa, velocità e direzione del vento. Le simulazioni sono in accordo con i dati osservativi e riescono a riprodurre l’effetto isola di calore: la differenza di temperatura fra città e zone rurali circostanti è nulla durante il giorno; al contrario, durante la notte l’isola di calore è presente, e in media raggiunge il massimo valore di 4°C alle 1:00. La presenza dei pannelli fotovoltaici abbassa la temperatura a 2 metri dell’aria al massimo di 0.8°C durante la notte, e l’altezza dello strato limite urbano dell’ordine 200mrispetto al caso senza pannelli. I risultati mostrano come l’uso di pannelli fotovoltaici all’interno del contesto urbano ha molteplici benefici: infatti, i pannelli fotovoltaici riescono a ridurre la temperatura durante un periodo di heat wave, e allo stesso tempo possono parzialmente sopperire all’alto consumo energetico, con una conseguente riduzione del consumo di combustibili fossili.
Resumo:
The Model for Prediction Across Scales (MPAS) is a novel set of Earth system simulation components and consists of an atmospheric model, an ocean model and a land-ice model. Its distinct features are the use of unstructured Voronoi meshes and C-grid discretisation to address shortcomings of global models on regular grids and the use of limited area models nested in a forcing data set, with respect to parallel scalability, numerical accuracy and physical consistency. This concept allows one to include the feedback of regional land use information on weather and climate at local and global scales in a consistent way, which is impossible to achieve with traditional limited area modelling approaches. Here, we present an in-depth evaluation of MPAS with regards to technical aspects of performing model runs and scalability for three medium-size meshes on four different high-performance computing (HPC) sites with different architectures and compilers. We uncover model limitations and identify new aspects for the model optimisation that are introduced by the use of unstructured Voronoi meshes. We further demonstrate the model performance of MPAS in terms of its capability to reproduce the dynamics of the West African monsoon (WAM) and its associated precipitation in a pilot study. Constrained by available computational resources, we compare 11-month runs for two meshes with observations and a reference simulation from the Weather Research and Forecasting (WRF) model. We show that MPAS can reproduce the atmospheric dynamics on global and local scales in this experiment, but identify a precipitation excess for the West African region. Finally, we conduct extreme scaling tests on a global 3?km mesh with more than 65 million horizontal grid cells on up to half a million cores. We discuss necessary modifications of the model code to improve its parallel performance in general and specific to the HPC environment. We confirm good scaling (70?% parallel efficiency or better) of the MPAS model and provide numbers on the computational requirements for experiments with the 3?km mesh. In doing so, we show that global, convection-resolving atmospheric simulations with MPAS are within reach of current and next generations of high-end computing facilities.
Resumo:
The West African Monsoon (WAM) and its representation in numerical models are strongly influenced by the Saharan Heat Low (SHL), a low-pressure system driven by radiative heating over the central Sahara and ventilated by the cold and moist inflow from adjacent oceans. It has recently been shown that a significant part of the southerly moisture flux into the SHL originates from convective cold pools over the Sahel. These density currents driven by evaporation of rain are largely absent in models with parameterized convection. This crucial issue has been hypothesized to contribute to the inability of many climate models to reproduce the variability of the WAM. Here, the role of convective cold pools approaching the SHL from the Atlas Mountains, which are a strong orographic trigger for deep convection in Northwest Africa, is analyzed. Knowledge about the frequency of these events, as well as their impact on large-scale dynamics, is required to understand their contribution to the variability of the SHL and to known model uncertainties. The first aspect is addressed through the development of an objective and automated method for the generation of multi-year climatologies not available before. The algorithm combines freely available standard surface observations with satellite microwave data. Representativeness of stations and influence of their spatial density are addressed by comparison to a satellite-only climatology. Applying this algorithm to data from automated weather stations and manned synoptic stations in and south of the Atlas Mountains reveals the frequent occurrence. On the order of 6 events per month are detected from May to September when the SHL is in its northernmost position. The events tend to cluster into several-days long convectively active periods, often with strong events on consecutive days. This study is the first to diagnose dynamical impacts of such periods on the SHL, based on simulations of two example cases using the Weather Research and Forecast (WRF) model at convection-permitting resolution. Sensitivity experiments with artificially removed cold pools as well as different resolutions and parameterizations are conducted. Results indicate increases in surface pressure of more than 1 hPa and significant moisture transports into the desert over several days. This moisture affects radiative heating and thus the energy balance of the SHL. Even though cold pool events north of the SHL are less frequent when compared to their Sahelian counterparts, it is shown that they gain importance due to their temporal clustering on synoptic timescale. Together with studies focusing on the Sahel, this work emphasizes the need for improved parameterization schemes for deep convection in order to produce more reliable climate projections for the WAM.
Resumo:
Este trabalho tem como objetivo a comparação da intensidade, frequência e distribuição de um conjunto de índices de estabilidade atmosférica simulados entre o clima histórico (1986-2005) e um cenário climático (2081-2100) na Península Ibérica. Considerou-se o cenário de emissão de gases RCP8.5. Estes índices avaliam a instabilidade atmosférica que é um elemento fundamental e percursor no desenvolvimento de tempestades. Através dos seus valores limite, é possível estimar alterações na probabilidade de ocorrência de eventos extremos que se poderão desenvolver no clima futuro, relativamente ao histórico. Primeiro, utilizou-se um conjunto de simulações do WRF com dois forçamentos: reanálises do ERA-Interim e um modelo do Max Planck Institute. De seguida, foram calculados diferentes índices de estabilidade. A validação do modelo consistiu no cálculo das médias sazonais, da sua diferença e das respetivas PDFs dos índices simulados pelo WRF-MPI e WRF-ERA. Verifica-se uma sobrestimação do CAPE, SHR6km (vento de corte) e SWEAT simulados pelo WRF-MPI. No entanto, nos campos dos índices simulados pelos dois forçamentos para o período histórico, verifica-se que os padrões espaciais são semelhantes apesar das diferenças na intensidade. Como as alterações climáticas dos índices são avaliadas através de diferenças, estas discrepâncias não invalidam a utilização do modelo no futuro. Posteriormente foram estudadas as alterações climáticas dos índices através da comparação entre o clima histórico e futuro. Estima-se um aumento da intensidade do CAPE e uma diminuição (aumento) da frequência de eventos com intensidade reduzida (elevada). Estas alterações são robustas no verão e outono. Também é esperado um aumento da intensidade do SHR6km na primavera e inverno tal como da frequência de SHR6km elevado nestas estações e uma redução da intensidade e da frequência de eventos com SHR6km elevado nas restantes. Haverá um possível aumento robusto da intensidade do SWEAT no verão e outono, bem como da frequência destes valores. Concluindo, será provável um aumento da frequência dos ambientes favoráveis ao desenvolvimento de tempestades, devido a uma maior intensidade e probabilidade de ocorrência de valores extremos do CAPE e do SWEAT. No entanto, a redução do SHR6km, poderá diminuir a organização das tempestades e o seu tempo de vida.
Resumo:
O objetivo da avaliação de impactos ambientais (AIA) é permitir uma análise integrada de possíveis impactos diretos ou indiretos ao meio ambiente decorrentes da implantação e operação de empreendimentos, de forma a propor de medidas ou programas que visem evitar, mitigar ou compensar tais impactos. Para tanto é necessário conhecer as diversas características das áreas direta e indiretamente afetadas pela instalação de um projeto, tais como as condições meteorológicas e climatológicas. Estas também são relevantes no estudo das emissões em cenários de operação regular ou acidental de empreendimentos, dada sua influência nas condições de transporte e de dispersão de poluentes na atmosfera. Neste trabalho é realizado um estudo das condições de dispersão de poluentes na atmosfera para a região da Central Nuclear Almirante Álvaro Alberto (CNAAA) em Angra dos Reis, no Estado do Rio de Janeiro, utilizando o modelo WRF, considerando um cenário acidental com liberações por 48 horas. Os dois episódios simulados representam os regimes de tempo predominantes na região obtidos a partir da análise pelo o método k-means sobre as EOFs para o campo de pressões ao nível médio do mar entre os anos de 1985 e 2014. A aplicação da metodologia dos regimes de tempo permite observar os fenômenos meteorológicos de grande escala persistentes e recorrentes sobre uma dada região, servindo como uma ferramenta para a elaboração de estudos e documentos técnicos que fundamentem a decisão dos órgãos reguladores.
Resumo:
Mesoscale Gravity Waves (MGWs) are large pressure perturbations that form in the presence of a stable layer at the surface either behind Mesoscale Convective Systems (MCSs) in summer or over warm frontal surfaces behind elevated convection in winter. MGWs are associated with damaging winds, moderate to heavy precipitation, and occasional heat bursts at the surface. The forcing mechanism for MGWs in this study is hypothesized to be evaporative cooling occurring behind a convective line. This evaporatively-cooled air generates a downdraft that then depresses the surface-based stable layer and causes pressure decreases, strong wind speeds and MGW genesis. Using the Weather Research and Forecast Model (WRF) version 3.0, evaporative cooling is simulated using an imposed cold thermal. Sensitivity studies examine the response of MGW structure to different thermal and shear profiles where the strength and depth of the inversion are varied, as well as the amount of wind shear. MGWs are characterized in terms of response variables, such as wind speed perturbations (U'), temperature perturbations (T'), pressure perturbations (P'), potential temperature perturbations (Θ'), and the correlation coefficient (R) between U' and P'. Regime Diagrams portray the response of MGW to the above variables in order to better understand the formation, causes, and intensity of MGWs. The results of this study indicate that shallow, weak surface layers coupled with deep, neutral layers above favor the formation of waves of elevation. Conversely, deep strong surface layers coupled with deep, neutral layers above favor the formation of waves of depression. This is also the type of atmospheric setup that tends to produce substantial surface heating at the surface.
Resumo:
The main aim of this study was to evaluate the impact of the urban pollution plume from the city of Manaus by emissions from mobile and stationary sources in the atmospheric pollutants concentrations of the Amazon region, by using The Weather Research and Forecasting with Chemistry (WRF-Chem) model. The air pollutants analyzed were CO, NOx, SO2, O3, PM2.5, PM10 and VOCs. The model simulations have been configured with a grid spacing of 3 km, with 190 x and 136 y grid points in horizontal spacing, centered in the city of Manaus during the period of 17 and 18 of March 2014. The anthropogenic emissions inventories have gathered from mobile sources that were estimated the emissions of light and heavy-duty vehicles classes. In addition, the stationary sources have considered the thermal power plants by the type of energy sources used in the region as well as the emissions from the refinery located in Manaus. Various scenarios have been defined with numerical experiments that considered only emissions by biogenic, mobile and stationary sources, and replacement fuel from thermal power plant, along with a future scenario consisting with twice as much anthropogenic emissions. A qualitative assessment of simulation with base scenario has also been carried out, which represents the conditions of the region in its current state, where several statistical methods were used in order to compare the results of air pollutants and meteorological fields with observed ground-based data located in various points in the study grid. The qualitative analysis showed that the model represents satisfactorily the variables analyzed from the point of view of the adopted parameters. Regarding the simulations, defined from the base scenarios, the numerical experiments indicate relevant results such as: it was found that the stationary sources scenario, where the thermal power plants are predominant, resulted in the highest concentrations, for all air pollutants evaluated, except for carbon monoxide when compared to the vehicle emissions scenario; The replacement of the energy matrix of current thermal power plants for natural gas have showed significant reductions in pollutants analyzed, for instance, 63% reductions of NOx in the contribution of average concentration in the study grid; A significant increase in the concentrations of chemical species was observed in a futuristic scenario, reaching up to a 81% increase in peak concentrations of SO2 in the study area. The spatial distributions of the scenarios have showed that the air pollution plume from Manaus is predominantly west and southwest, where it can reach hundreds of kilometers to areas dominated by original soil covering.