958 resultados para WATER COOLING
Resumo:
The cooling process in conventional rotomolding is relatively long due to poor thermal conductivity of plastics. The lack of internal cooling is a major limitation although rapid external cooling is possible. Various internal cooling methodologies have been studied to reduce the cycle time. These include the use of compressed air, cryogenic liquid nitrogen, chilled water coils, and cryogenic liquid carbon dioxide, all of which have limitations. However, this article demonstrates the use of water spray cooling of polymers as a viable and effective method for internal cooling in rotomolding. To this end, hydraulic, pneumatic, and ultrasonic nozzles were applied and evaluated using a specially constructed test rig to assess their efficiency. The effects of nozzle type and different parametric settings on water droplet size, velocity, and mass flow rate were analyzed and their influence on cooling rate, surface quality, and morphology of polymer exposed to spray cooling were characterized. The pneumatic nozzle provided highest average cooling rate while the hydraulic nozzle gave lowest average cooling rate. The ultrasonic nozzle with medium droplet size traveling at low velocity produced satisfactory surface finish. Water spray cooling produced smaller spherulites compared to ambient cooling whilst increasing the cooling rate decreases the percentage crystallinity. © 2011 Society of Plastics Engineers Copyright © 2011 Society of Plastics Engineers.
Resumo:
Abstract In a continuing study to improve the efficiency of dormant bud cryopreservation for tissues hardened in maritime climates, the water status of dormant buds was monitored between -4°C and recovery from liquid nitrogen (LN). Measurement of water content, simple thermal analysis and differential scanning calorimetry were employed. Buds did not lose water during cooling to, or holding at -30°C indicating that cryodehydration and/or other adaptive responses contributed during this essential step. A bud exotherm that was an artefact of warming was detected due to necessary handling at -4°C before cooling to -30°C. There were no significant differences between cultivars with respect to water status at -30°C or immediately upon rewarming from LN despite significant differences in post-LN survival. Buds rehydrated in 5 days, but up to 14 days may be needed for recovery for some cultivars. In some instances buds could be grafted without rehydration, taking up water across the early graft union.
Resumo:
Abstract The established protocol for the cryopreservation of winter-dormant Malus buds requires that stem explants, containing a single, dormant bud are desiccated at -4°C, for up to 14 days, to reduce their water content to 25-30% of fresh weight. Using three apple cultivars, with known differences in response to cryopreservation, the pattern of evaporative water loss has been characterised, including early freezing events in the bud and cortical tissues that allow further desiccation by water migration to extracellular ice. There were no significant differences between cultivars in this respect or in the proportions of tissue water lost during the desiccation process. Differential Scanning Calorimetry (to -90°C) of intact buds indicated that bud tissues of the cultivar with the poorest response to cryopreservation had the highest residual water content at the end of the desiccation process and froze at the highest temperature Keywords: Malus, cryopreservation, dormant bud, dehydration
Resumo:
From the 60s to the 90s, a great number of events related to the Emergency Core Cooling Systems Strainers have been happened in all kind of reactors all over the world. Thus, the Nuclear Regulatory Commission of the USA emitted some Bulletins to address the concerns about the adequacy of Emergency Core Cooling Systems (ECCS) strainer performance at boiling water reactors (BWR). In Spain the regulatory body (Consejo de Seguridad Nuclear, CSN) adopted the USA regulation and Cofrentes NPP installed new strainers with a considerable bigger size than the old strainers. The nuclear industry conducted significant and extensive research, guidance development, testing, reviews, and hardware and procedure changes during the 90s to resolve the issues related to debris blockage of BWR strainers. In 2001 the NRC and CSN closed the Bulletins. Thereafter, the strainers issues were moved to the PWR reactors. In 2004 the NRC issued a Generic Letter (GL). It requested the resolution of several effects which were not noted in the past. The GL regarded to be resolved by the PWR reactors but the NRC in USA and the CSN in Spain have requested that the BWR reactors investigate differences between the methodologies used by the BWRs and PWRs. The developments and improvements done for Cofrentes NPP are detailed. Studies for this plant show that the head loss due to the considered debris is at most half of the limited head loss for the ECCS strainer and the NPSH (Net Positive Suction Head) required for the ECCS pumps is at least three times lower than the NPSH available.
Resumo:
In questa tesi ho inizialmente esposto cenni teorici sulle reazioni di fusione nucleare e le motivazioni che hanno spinto la comunità scientifica verso la ricerca di questa nuova fonte energetica. Ho descritto il progetto ITER nei suoi obiettivi e nei principi di funzionamento di un reattore di tipo Tokamak e di tutti i componenti principali dell'intero impianto. In primo piano, mi sono focalizzato sul sistema di raffreddamento primario ad acqua del Tokamak (TCWS), con una prima panoramica sui suoi sottosistemi descrivendo i loro obiettivi, quali asportazione di calore e sicurezza dell'impianto. Successivamente ho analizzato nello specifico i particolari tecnici dei principali sottosistemi quali i vari circuiti di asportazione primaria del calore (PHTS Loops) dei diversi componenti del Tokamak, il Vacuum Vessel, il First Wall Blanket, il Divertor e il Neutral Beam Injector; ho esaminato i processi di controllo della qualità e del volume del fluido refrigerante nei circuiti (CVCS); ed infine le funzioni e le caratteristiche dei sistemi di drenaggio e di riempimento dei circuiti con i propri serbatoi ordinari e di sicurezza, e del sistema di asciugatura del fluido refrigerante con le sue diverse modalità operative.
Resumo:
Issued March 1978.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical references.
Resumo:
Renewable alternatives such as biofuels and optimisation of the engine operating parameters can enhance engine performance and reduce emissions. The temperature of the engine coolant is known to have significant influence on engine performance and emissions. Whereas much existing literature describes the effects of coolant temperature in engines using fossil derived fuels, very few studies have investigated these effects when biofuel is used as an alternative fuel. Jatropha oil is a non-edible biofuel which can substitute fossil diesel for compression ignition (CI) engine use. However, due to the high viscosity of Jatropha oil, technique such as transesterification, preheating the oil, mixing with other fuel is recommended for improved combustion and reduced emissions. In this study, Jatropha oil was blended separately with ethanol and butanol, at ratios of 80:20 and 70:30. The fuel properties of all four blends were measured and compared with diesel and jatropha oil. It was found that the 80% jatropha oil + 20% butanol blend was the most suitable alternative, as its properties were closest to that of diesel. A 2 cylinder Yanmar engine was used; the cooling water temperature was varied between 50°C and 95°C. In general, it was found that when the temperature of the cooling water was increased, the combustion process enhanced for both diesel and Jatropha-Butanol blend. The CO2 emissions for both diesel and biofuel blend were observed to increase with temperature. As a result CO, O2 and lambda values were observed to decrease when cooling water temperature increased. When the engine was operated using diesel, NOX emissions correlated in an opposite manner to smoke opacity; however, when the biofuel blend was used, NOX emissions and smoke opacity correlated in an identical manner. The brake thermal efficiencies were found to increase slightly as the temperature was increased. In contrast, for all fuels, the volumetric efficiency was observed to decrease as the coolant temperature was increased. Brake specific fuel consumption was observed to decrease as the temperature was increased and was higher on average when the biofuel was used, in comparison to diesel. The study concludes that the effects of engine coolant temperature on engine performance and emission characteristics differ between biofuel blend and fossil diesel operation. The coolant temperature needs to be optimised depending on the type of biofuel for optimum engine performance and reduced emissions.
Resumo:
The knowledge of insulation debris generation and transport gains in importance regarding reactor safety research for PWR and BWR. The insulation debris released near the break consists of a mixture of very different fibres and particles concerning size, shape, consistence and other properties. Some fraction of the released insulation debris will be transported into the reactor sump where it may affect emergency core cooling. Experiments are performed to blast original samples of mineral wool insulation material by steam under original thermal-hydraulic break conditions of BWR. The gained fragments are used as initial specimen for further experiments at acrylic glass test facilities. The quasi ID-sinking behaviour of the insulation fragments are investigated in a water column by optical high speed video techniques and methods of image processing. Drag properties are derived from the measured sinking velocities of the fibres and observed geometric parameters for an adequate CFD modelling. In the test rig "Ring line-II" the influence of the insulation material on the head loss is investigated for debris loaded strainers. Correlations from the filter bed theory are adapted with experimental results and are used to model the flow resistance depending on particle load, filter bed porosity and parameters of the coolant flow. This concept also enables the simulation of a particular blocked strainer with CFDcodes. During the ongoing work further results of separate effect and integral experiments and the application and validation of the CFD-models for integral test facilities and original containment sump conditions are expected.
Resumo:
The temperature of the coolant is known to have significant influence on engine performance and emissions. Whereas existing literature describes the effects of coolant temperature in engines using fossil derived fuels, very few studies have investigated these effects when biofuel is used. In this study, Jatropha oil was blended separately with ethanol and butanol. It was found that the 80% jatropha oil + 20% butanol blend was the most suitable alternative, as its properties were closest to that of fossil diesel. The coolant temperature was varied between 50°C and 95°C. The combustion process enhanced for both diesel and biofuel blend, when the coolant temperature was increased. The carbon dioxide emissions for both diesel and biofuel blend were observed to increase with temperature. The carbon monoxide, oxygen and lambda values were observed to decrease with temperature. When the engine was operated using diesel, nitrogen oxides emissions correlated in an opposite manner to smoke opacity; however, nitrogen oxides emissions and smoke opacity correlated in an identical manner for biofuel blend. Brake specific fuel consumption was observed to decrease as the temperature was increased and was higher on average when the biofuel was used. The study concludes that both biofuel blend and fossil diesel produced identical correlations between coolant temperature and engine performance. The trends of nitrogen oxides and smoke emissions with cooling temperatures were not identical to fossil diesel when biofuel blend was used in the engine.
Resumo:
In this study, thermal, exergetic analysis and performance evaluation of seawater and fresh wet cooling tower and the effect of parameters on its performance is investigated. With using of energy and mass balance equations, experimental results, a mathematical model and EES code developed. Due to lack of fresh water, seawater cooling is interesting choice for future of cooling, so the effect of seawater in the range of 1gr/kg to 60gr/kg for salinity on the performance characteristics like air efficiency, water efficiency, output water temperature of cooling tower, flow of the exergy, and the exergy efficiency with comparison with fresh water examined. Decreasing of air efficiency about 3%, increasing of water efficiency about 1.5% are some of these effects. Moreover with formation of fouling the performance of cooling tower decreased about 15% which this phenomena and its effects like increase in output water temperature and tower excess volume has been showed and also accommodate with others work. Also optimization for minimizing cost, maximizing air efficiency, and minimizing exergy destruction has been done, results showed that optimization on minimizing the exergy destruction has been satisfy both minimization of the cost and the maximization of the air efficiency, although it will not necessarily permanent for all inputs and optimizations. Validation of this work is done by comparing computational results and experimental data which showed that the model have a good accuracy.
Resumo:
The purpose of this study was to determine the effects of cryotherapy, in the form of cold water immersion, on knee joint position sense. Fourteen healthy volunteers, with no previous knee injury or pre-existing clinical condition, participated in this randomized cross-over trial. The intervention consisted of a 30-min immersion, to the level of the umbilicus, in either cold (14 ± 1°C) or tepid water(28 ± 1°C). Approximately one week later, in a randomized fashion, the volunteers completed the remaining immersion. Active ipsilateral limb repositioning sense of the right knee was measured, using weight-bearing and non-weight bearing assessments, employing video-recorded 3D motion analysis. These assessments were conducted immediately before and after a cold and tepid water immersion. No significant differences were found between treatments for the absolute (P = 0.29), relative (P = 0.21) or variable error (P = 0.86). The average effect size of the outcome measures was modest (range –0.49 to 0.9) and all the associated 95% confidence intervals for these effect sizes crossed zero. These results indicate that there is no evidence of an enhanced risk of injury, following a return to sporting activity, after cold water.