978 resultados para Von Willebrand factor
Resumo:
We report here two postmortem cases of dogs with intravascular lymphomatosis affecting the central nervous system. Intravascular lymphomatosis is represented by an exclusively intravascular proliferation of neoplastic lymphoid cells. To characterize the origin of the neoplastic cells, we have proceeded with immunohistochemical analysis to identify B and T lymphocytes and endothelial cells. The results showed predominance of cells from the T cell lineage, and no evidence of B cell origin was found. Few cells from one dog also exhibited cytoplasmatic staining for vimentin and Von Willebrand factor. Although in one case some immunophenotype diversity was observed, the massive presence of CD3 positive cells confirmed these neoplasms as intravascular lymphomatosis of T cell origin.
Resumo:
Background: Cardiovascular diseases remain leaders as the major causes of mortality in Western society. Restoration of the circulation through construction of bypass surgical treatment is regarded as the gold standard treatment of peripheral vascular diseases, and grafts are necessary for this purpose. The great saphenous vein is often not available and synthetic grafts have their limitations. Therefore, new techniques to produce alternative grafts have been developed and, in this sense, tissue engineering is a promising alternative to provide biocompatible grafts. This study objective was to reconstruct the endothelium layer of decellularized vein scaffolds, using mesenchymal stem cells (MSCs) and growth factors obtained from platelets. Methods: Fifteen nonpregnant female adult rabbits were used for all experiments. Adipose tissue and vena cava were obtained and subjected to MSCs isolation and tissue decellularization, respectively. MSCs were subjected to differentiation using endothelial inductor growth factor (EIGF) obtained from human platelet lysates. Immunofluorescence, histological and immunohistochemical analyses were employed for the final characterization of the obtained blood vessel substitute. Results: The scaffolds were successfully decellularized with sodium dodecyl sulfate. MSCs actively adhered at the scaffolds, and through stimulation with EIGF were differentiated into functional endothelial cells, secreting significantly higher quantities of von Willebrand factor (0.85 μg/mL; P < .05) than cells cultivated under the same conditions, without EIGF (0.085 μg/mL). Cells with evident morphologic characteristics of endothelium were seen at the lumen of the scaffolds. These cells also stained positive for fascin protein, which is highly expressed by differentiated endothelial cells. Conclusions: Taken together, the use of decellularized bioscaffold and subcutaneous MSCs seems to be a potential approach to obtain bioengineered blood vessels, in the presence of EIGF supplementation. © 2013 Society for Vascular Surgery.
Resumo:
Pós-graduação em Pesquisa e Desenvolvimento (Biotecnologia Médica) - FMB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thrombocytopenia and platelet dysfunction occur in patients bitten by Bothrops sp snakes in Latin America. An experimental model was developed in mice to study the effects of B. asper venom in platelet numbers and function. Intravenous administration of this venom induces rapid and prominent thrombocytopenia and ex vivo platelet hypoaggregation. The drop in platelet numbers was primarily due to aspercetin, a protein of the C-type lectin family which induces von Willebrand factor-mediated platelet aggregation/agglutination. In addition, the effect of class P-III hemorrhagic metalloproteinases on the microvessel wall also contributes to thrombocytopenia since jararhagin, a P-III metalloproteinase, reduced platelet counts. Hypoaggregation was associated with the action of procoagulant and defibrin(ogen)ating proteinases jararacussin-1 (a thrombin-like serine proteinase) and basparin A (a prothrombin activating metalloproteinase). At the doses which induced hypoaggregation, these enzymes caused defibrin(ogen)ation, increments in fibrin(ogen) degradation products and D-dimer and prolongation of the bleeding time. Incubation of B. asper venom with batimastat and α 2-macroglobulin abrogated the hypoaggregating activity, confirming the role of venom proteinases in this effect. Neither aspercetin nor the defibrin(ogen)ating and hypoaggregating components induced hemorrhage upon intravenous injection. However, aspercetin, but not the thrombin-like or the prothrombin-activating proteinases, potentiated the hemorrhagic activity of two hemorrhagic metalloproteinases in the lungs. © 2005 Schattauer GmbH, Stuttgart.
Resumo:
PURPOSE: To evaluate the implant of human adipose derived stem cells (ADSC) delivered in hyaluronic acid gel (HA), injected in the subcutaneous of athymic mice. METHODS: Control implants -HA plus culture media was injected in the subcutaneous of the left sub scapular area of 12 athymic mice. ADSC implants: HA plus ADSC suspended in culture media was injected in the subcutaneous, at the contra lateral area, of the same animals. With eight weeks, animals were sacrificed and the recovered implants were processed for extraction of genomic DNA, and histological study by hematoxilin-eosin staining and immunufluorescence using anti human vimentin and anti von Willebrand factor antibodies. RESULTS: Controls: Not visualized at the injection site. An amorphous substance was observed in hematoxilin-eosin stained sections. Human vimentin and anti von Willebrand factor were not detected. No human DNA was detected. ADSC implants - A plug was visible at the site of injection. Fusiform cells were observed in sections stained by hematoxilin- eosin and both human vimentin and anti von Willebrand factor were detected by immunofluorescence. The presence of human DNA was confirmed. CONCLUSION: The delivery of human adipose derived stem cells in preparations of hyaluronic acid assured cells engraftment at the site of injection.
Resumo:
Studies of skin wound healing in crocodilians are necessary given the frequent occurrence of cannibalism in intensive farming systems. Air temperature affects tissue recovery because crocodilians are ectothermic. Therefore, the kinetics of skin wound healing in Caiman yacare were examined at temperatures of 33°C and 23°C. Sixteen caiman were selected and divided into two groups of eight maintained at 23°C or 33°C. The studied individuals' scars were photographed after 1, 2, 3, 7, 15 and 30 days of the experimental conditions, and samples were collected for histological processing after 3, 7, 15 and 30 days. Macroscopically, the blood clot (heterophilic granuloma) noticeably remained in place covering the wound longer for the caiman kept at 23°C. Microscopically, the temperature of 23°C slowed epidermal migration and skin repair. Comparatively, new blood vessels, labeled using von Willebrand factor (vWF) antibody staining, were more frequently found in the scars of the 33°C group. The collagen fibers in the dermis were denser in the 33°C treatment. Considering the delayed healing at 23°C, producers are recommended to keep wounded animals at 33°C, especially when tanks are cold, to enable rapid wound closure and better repair of collagen fibers because such lesions tend to compromise the use of their skin as leather.
Resumo:
Group A Streptococcus is a Gram-positive human pathogen able to colonize both upper respiratory tract and skin. GAS is responsible for several acute diseases and autoimmune sequelae that account for half a million deaths worldwide every year (Cunningham et al., 2000). As other bacteria, GAS infections requires the capacity of the pathogen to adhere to host tissues and to form cell aggregates. The ability to persist in distinct host niches like the throat and the skin and to trigger infections is associated with the expression of different GAS virulence factors. GAS pili has been described as important virulence factors encoded by different FCT-operon regions. Based on this information, we decided to study the possible effect of environmental conditions that could regulate the pili expression. In this study we reported the influence of pH environment variations in biofilm formation for strains pertaining to a panel of different GAS FCT-types. The biofilm formation was promoted, excepted in the FCT-1 strains, by a changing in pH from physiological to acidic condition of growth in in vitro biofilm assay. By analyzing the possible association between biofilm formation and pH dependence, we have found that in FCT-2 and FCT-3 strains, the biofilm is promoted by pH reduction leading to an increase of pili expression. These data confirmed a direct link between pH dependent pilus expression and biofilm formation in GAS. As pili are a multi component structure we decided to investigate the functional role of one of its subunits, the AP-1 protein. AP-1 is highly conserved through the different FCT-types and suggests a possible essential role for the pili function. We focused our attention on the AP-1 protein encoded by the FCT-1 strains (M6). In particular this AP-1 protein contains the von Willebrand Factor A (VWFA) domain, which share an homology with the human VWFA domain that has been reported to be involved in adhesion process. We have demonstrated that the AP-1 protein binds to human epithelial cells by its VWFA domain, whereas the biofilm formation is mediated by the N-terminal region of AP-1 protein. Moreover, analyzing the importance of AP-1 in in vivo experiments we found a major capacity of tissue dissemination for the wild-type strain compared to the isogenic AP-1 deletion mutant. Pili have been also reported as potential vaccine candidates against Gram positive bacteria. For these reason we decided to investigate the relationship between cross reaction of sera raised against different GAS and GBS pilin subunits and the presence of a conserved Cna_B domain, in different pilin components. Our idea was to investigate if, using pilus conserved domains, a broad coverage vaccine against streptococcal infection could be possible.
Resumo:
It has been postulated that blood group O subjects may be partially protected against thrombotic thrombocytopenic purpura (TTP) because they have lower plasma levels of von Willebrand factor.
Resumo:
The apparently spontaneous development of autoantibodies to ADAMTS13 in previously healthy individuals is a major cause of thrombotic thrombocytopenic purpura (TTP). Epitope mapping studies have shown that in most patients antibodies directed towards the spacer domain of ADAMTS13 are present. A single antigenic surface comprising Arg(660) , Tyr(661) and Tyr(665) that contributes to the productive binding of ADAMTS13 to unfolded von Willebrand factor is targeted by anti-spacer domain antibodies. Antibodies directed to the carboxyl-terminal CUB1-2 and TSP2-8 domains have also been observed in the plasma of patients with acquired TTP. As yet it has not been established whether this class of antibodies modulates ADAMTS13 activity. Inspection of the primary sequence of human monoclonal anti-ADAMTS13 antibodies suggests that the variable heavy chain germline gene segment VH1-69 is frequently incorporated. We suggest a model in which 'shape complementarity' between the spacer domain and residues encoded by the VH1-69 gene segment explain the preferential use of this variable heavy chain gene segment. Finally, a model is presented for the development of anti-ADAMTS13 antibodies in previously healthy individuals that incorporates the recent identification of HLA DRB1*11 as a risk factor for acquired TTP.
Resumo:
This review describes some natural proteins, which can be employed, either as factor concentrates derived from human plasma or as recombinant drug, to modulate the coagulation system. I will address some biochemical characteristics and the physiological role of von Willebrand factor, the coagulation factors of the extrinsic and intrinsic pathways, and the physiological anticoagulant protein C. In addition, I will detail the pharmacological compounds, which are available for influencing or substituting the coagulation proteins: desmopressin (DDAVP), single coagulation factor concentrates, prothrombin complex concentrates, and protein C concentrate. In particular, I will address some treatment topics of general medical interest, such as the treatment of massive bleeding, the correction of the coagulopathy induced by vitamin K-antagonists in patients with cerebral haemorrhage, and of the coagulopathy of meningococcemia. Finally, I will describe some properties and practical clinical applications of the recombinant anticoagulans lepirudin and bivalirudin, which are derived from hirudin, the natural anticoagulant of the medical leech.