943 resultados para Volumetric capacitances
Resumo:
In this work, a volumetric unit previously assembled by the research group was upgraded. This unit revamping was necessary due to the malfunction of the solenoid valves employed in the original experimental setup, which were not sealing the gas properly leading to erroneous adsorption equilibrium measurements. Therefore, the solenoid valves were substituted by manual ball valves. After the volumetric unit improvement its operation was validated. For this purpose, the adsorption equilibrium of carbon dioxide (CO2) at 323K and 0 - 20 bar was measured on two different activated carbon samples, in the of extrudates (ANG6) and of a honeycomb monolith (ACHM). The adsorption equilibrium results were compared with data previously measured by the research group, using a high-pressure microbalance from Rubotherm GmbH (Germany) – gravimetric. The results obtained using both apparatuses are coincident thus validating the good operation of the volumetric unit upgraded in this work. Furthermore, the adsorption equilibrium of CO2 at 303K and 0 - 10 bar on Metal-Organic Frameworks (MOFs) Cu-BTC and Fe-BTC was also studied. The CO2 adsorption equilibrium results for both MOFs were compared with the literature results showing good agreement, which confirms the good quality of the experimental results obtained in the new volumetric unit. Cu-BTC sample showed significantly higher CO2 adsorption capacity when compared with the Fe-BTC sample. The revamping of the volumetric unit included a new valve configuration in order to allow testing an alternative method for the measurement of adsorption equilibrium. This new method was employed to measure the adsorption equilibrium of CO2 on ANG6 and ACHM at 303, 323 and 353K within 0-10 bar. The good quality of the obtained experimental data was testified by comparison with data previously obtained by the research group in a gravimetric apparatus.
Resumo:
BACKGROUND: The presence of cognitive and structural deficits in euthymic elderly depressed patients remains a matter of debate. Integrative aetiological models assessing concomitantly these parameters as well as markers of psychological vulnerability such as persistent personality traits, are still lacking for this age group. METHODS: Cross-sectional comparisons of 38 elderly remitted patients with early-onset depression (EOD) and 62 healthy controls included detailed neuropsychological assessment, estimates of brain volumes in limbic areas and white matter hyperintensities, as well as evaluation of the Five-Factor personality dimensions. RESULTS: Both cognitive performances and brain volumes were preserved in euthymic EOD patients. No significant group differences were observed in white matter hyperintensity scores between the two groups. In contrast, EOD was associated with significant increase of Neuroticism and decrease of Extraversion facet scores. LIMITATIONS: Results concern the restricted portion of EOD patients without psychiatric and physical comorbidities. Future longitudinal studies are necessary to determine the temporal relationship between the occurrence of depression and personality dimensions. CONCLUSIONS: After remission from acute depressive symptoms, cognitive performances remain intact in elderly patients with EOD. In contrast to previous observations, these patients display neither significant brain volume loss in limbic areas nor increased vascular burden compared to healthy controls. Further clinical investigations on EOD patterns of vulnerability in old age will gain from focusing on psychological features such as personality traits rather than neurocognitive clues.
Resumo:
Virtual Reality (VR) is widely used in visualizing medical datasets. This interest has emerged due to the usefulness of its techniques and features. Such features include immersion, collaboration, and interactivity. In a medical visualization context, immersion is important, because it allows users to interact directly and closelywith detailed structures in medical datasets. Collaboration on the other hand is beneficial, because it gives medical practitioners the chance to share their expertise and offer feedback and advice in a more effective and intuitive approach. Interactivity is crucial in medical visualization and simulation systems, because responsiveand instantaneous actions are key attributes in applications, such as surgical simulations. In this paper we present a case study that investigates the use of VR in a collaborative networked CAVE environment from a medical volumetric visualization perspective. The study will present a networked CAVE application, which has been built to visualize and interact with volumetric datasets. We will summarize the advantages of such an application and the potential benefits of our system. We also will describe the aspects related to this application area and the relevant issues of such implementations.
Resumo:
Non-linear methods for estimating variability in time-series are currently of widespread use. Among such methods are approximate entropy (ApEn) and sample approximate entropy (SampEn). The applicability of ApEn and SampEn in analyzing data is evident and their use is increasing. However, consistency is a point of concern in these tools, i.e., the classification of the temporal organization of a data set might indicate a relative less ordered series in relation to another when the opposite is true. As highlighted by their proponents themselves, ApEn and SampEn might present incorrect results due to this lack of consistency. In this study, we present a method which gains consistency by using ApEn repeatedly in a wide range of combinations of window lengths and matching error tolerance. The tool is called volumetric approximate entropy, vApEn. We analyze nine artificially generated prototypical time-series with different degrees of temporal order (combinations of sine waves, logistic maps with different control parameter values, random noises). While ApEn/SampEn clearly fail to consistently identify the temporal order of the sequences, vApEn correctly do. In order to validate the tool we performed shuffled and surrogate data analysis. Statistical analysis confirmed the consistency of the method. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Texture is an important visual attribute used to describe the pixel organization in an image. As well as it being easily identified by humans, its analysis process demands a high level of sophistication and computer complexity. This paper presents a novel approach for texture analysis, based on analyzing the complexity of the surface generated from a texture, in order to describe and characterize it. The proposed method produces a texture signature which is able to efficiently characterize different texture classes. The paper also illustrates a novel method performance on an experiment using texture images of leaves. Leaf identification is a difficult and complex task due to the nature of plants, which presents a huge pattern variation. The high classification rate yielded shows the potential of the method, improving on traditional texture techniques, such as Gabor filters and Fourier analysis.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objective. To evaluate the content of inorganic particles and the flexural strength of new condensable composites for posterior teeth in comparison to hybrid conventional composites.Method. The determination of the content of inorganic particles was performed by mass weighing of a polymerized composite before and after the elimination of the organic phase. The volumetric particle content was determined by a practical method based on Archimedes' principle, which calculates the volume of the composite and their particles by differential mass measured in the air and in water. The flexural. strength of three points was evaluated according to the norm ISO 4049:1988.Results. The results showed the following filter content: Alert, 67.26%; Z-100, 65.27%; Filtek P 60, 62.34%; Ariston pHc, 64.07%; Tetric Ceram, 57.22%; Definite, 54.42%; Solitaire, 47.76%. In the flexural strength test, the materials presented the following decreasing order of resistance: Filtek P 60 (170.02 MPa) > Z-100 (151.34 MPa) > Tetric Ceram (126.14 MPa) = Alert (124.89 MPa) > Ariston pHc (102.00 MPa) = Definite (93.63 MPa) > Solitaire (56.71 MPa).Conclusion. New condensable composites for posterior teeth present a concentration of inorganic particles similar to those of hybrid composites but do not necessarily present higher flexural strength. (C) 2003 Elsevier B.V. Ltd. Alt rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: This study was intended to quantify the marginal leakage of three glass-ionomer-resin composite hybrid materials and compare it with the leakage exhibited by a glass-ionomer cement and a bonded resin composite system. Method and materials: Standardized Class V cavities were prepared on root surfaces of 105 extracted human teeth, randomly assigned to five groups of 21 each, and restored with either Ketac-Fil Aplicap, Z100/Scotchbond Multi-Purpose Plus, Vitremer, Photac-Fil Aplicap, or Dyract. The teeth were thermally stressed for 500 cycles and stained with methylene blue. The microleakage was quantified spectrophotometrically, and the data were statistically analyzed with Friedman's test. Results: There were no significant differences in microleakage among the five groups. Restorations of all tested materials showed some marginal leakage in Class V cavities. Conclusion: The microleakage performance of glass-ionomer-resin composite hybrid materials was similar to those of a conventional glass-ionomer and a bonded resin composite system.
Resumo:
The correction of bone defects can be performed using autogenous or alloplastic materials, such as beta-tricalcium phosphate (β-TCP). This study compared the changes in bone volume (CBV) after maxillary sinus lifting using autogenous bone (n=12), autogenous bone associated with β-TCP 1:1 (ChronOS; DePuy Synthes, Paoli, CA, USA) (n=9), and β-TCP alone (n=11) as grafting material, by means of cone beam computed tomography (CBCT). CBV was evaluated by comparing CBCT scans obtained in the immediate postoperative period (5-7 days) and at 6 months postoperative in each group using OsiriX software (OsiriX Foundation, Geneva, Switzerland). The results showed an average resorption of 45.7±18.6% for the autogenous bone group, 43.8±18.4% for the autogenous bone+β-TCP group, and 38.3±16.6% for the β-TCP group. All bone substitute materials tested in this study presented satisfactory results for maxillary sinus lifting procedures regarding the maintenance of graft volume during the healing phase before the insertion of implants, as assessed by means of CBCT.
Resumo:
OBJECTIVE: To evaluate the ability of orbital apex crowding volume measurements calculated with multidetector-computed tomography to detect dysthyroid optic neuropathy. METHODS: Ninety-three patients with Graves' orbitopathy were studied prospectively. All of the patients underwent a complete neuro-ophthalmic examination and computed tomography scanning. Volumetric measurements were calculated from axial and coronal contiguous sections using a dedicated workstation. Orbital fat and muscle volume were estimated on the basis of their attenuation values (in Hounsfield units) using measurements from the anterior orbital rim to the optic foramen. Two indexes of orbital muscle crowding were calculated: i) the volumetric crowding index, which is the ratio between soft tissue (mainly extraocular muscles) and orbital fat volume and is based on axial scans of the entire orbit; and ii) the volumetric orbital apex crowding index, which is the ratio between the extraocular muscles and orbital fat volume and is based on coronal scans of the orbital apex. Two groups of orbits (with and without dysthyroid optic neuropathy) were compared. RESULTS: One hundred and two orbits of 61 patients with Graves' orbitopathy met the inclusion criteria and were analyzed. Forty-one orbits were diagnosed with Graves' orbitopathy, and 61 orbits did not have optic neuropathy. The two groups of orbits differed significantly with regard to both of the volumetric indexes (p<0.001). Although both indexes had good discrimination ability, the volumetric orbital apex crowding index yielded the best results with 92% sensitivity, 86% specificity, 81%/94% positive/negative predictive value and 88% accuracy at a cutoff of 4.14. CONCLUSION: This study found that the orbital volumetric crowding index was a more effective predictor of dysthyroid optic neuropathy than previously described computed tomography indexes were.