928 resultados para Voltage droop


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high voltage power converter is presented in this paper and is based on a Capacitor-Diode Voltage Multiplier (CDVM) supplied through an inverter. This power converter has the capabilities of generating variable high DC voltage with improved transient response. The simulation results which are presented in this paper verify that due to its fast transient response, this converter can be used as a high DC voltage source in many applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the analysis of shaft voltage in different configurations of a doubly fed induction generator (DFIG) and an induction generator (IG) with a back-to-back inverter in wind turbine applications. Detailed high frequency model of the proposed systems have been developed based on existing capacitive couplings in IG & DFIG structures and common mode voltage sources. In this research work, several arrangements of DFIG based wind energy conversion systems (WES) are investigated in case of shaft voltage calculation and its mitigation techniques. Placements of an LC line filter in different locations and its effects on shaft voltage elimination are studied via Mathematical analysis and simulations. A pulse width modulation (PWM) technique and a back-to-back inverter with a bidirectional buck converter have been presented to eliminate the shaft voltage in a DFIG wind turbine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents several shaft voltage reduction techniques for doubly-fed induction generators in wind turbine applications. These techniques includes: pulse width modulated voltage without zero vectors, multi-level inverters with proper PWM strategy, better generator design to minimize effective capacitive couplings in shaft voltage, active common-mode filter, reducing dc-link voltage and increasing modulation index. These methods have been verified with mathematical analysis and simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the analysis of the parameters which are effective in shaft voltage generation of induction generators. It focuses on different parasitic capacitive couplings by mathematical equations, finite element simulations and experiments. The effects of different design parameters have been studied on proposed capacitances and resultant shaft voltage. Some parameters can change proposed capacitive coupling such as: stator slot tooth, the gap between slot tooth and winding, and the height of the slot tooth, as well as the air gap between the rotor and the stator. This analysis can be used in a primary stage of a generator design to reduce motor shaft voltage and avoid additional costs of resultant bearing current mitigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high voltage pulsed power supply is proposed in this paper based on oscillation between an inductor and a capacitor in an LC circuit. A two-leg resonant circuit, supplied through an inverter with an alternative voltage waveform, can generate output voltage up to four times an input voltage magnitude. Bipolar and unipolar modulations are used in a single phase inverter to analyse their effects on the proposed resonant converter. Simulations have been carried out to evaluate the proposed topology and control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a high voltage pulsed power system based on low voltage switch-capacitor units connected to a current source for several applications such as plasma systems. A buck-boost converter topology is used to utilize the current source and a series of low voltage switch-capacitor units is connected to the current source in order to provide high voltage with high voltage stress (dv/dt) as demanded by loads. This pulsed power converter is flexible in terms of energy control, in that the stored energy in the current source can be adjusted by changing the current magnitude to significantly improve the efficiency of various systems with different requirements. Output voltage magnitude and stress (dv/dt) can be controlled by a proper selection of components and control algorithm to turn on and off switching devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a method enhancing stability of an autonomous microgrid with distribution static compensator (DSTATCOM) and power sharing with multiple distributed generators (DG). It is assumed that all the DGs are connected through voltage source converter (VSC) and all connected loads are passive, making the microgrid totally inertia less. The VSCs are controlled by either state feedback or current feedback mode to achieve desired voltage-current or power outputs respectively. A modified angle droop is used for DG voltage reference generation. Power sharing ratio of the proposed droop control is established through derivation and verified by simulation results. A DSTATCOM is connected in the microgrid to provide ride through capability during power imbalance in the microgrid, thereby enhancing the system stability. This is established through extensive simulation studies using PSCAD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes control methods for proper load sharing between parallel converters connected in a microgrid and supplied by distributed generators (DGs). It is assumed that the microgrid spans a large area and it supplies loads in both in grid connected and islanded modes. A control strategy is proposed to improve power quality and proper load sharing in both islanded and grid connected modes. It is assumed that each of the DGs has a local load connected to it which can be unbalanced and/or nonlinear. The DGs compensate the effects of unbalance and nonlinearity of the local loads. Common loads are also connected to the microgrid, which are supplied by the utility grid under normal conditions. However during islanding, each of the DGs supplies its local load and shares the common load through droop characteristics. Both impedance and motor loads are considered to verify the system response. The efficacy of the controller has been validated through simulation for various operating conditions using PSCAD. It has been found through simulation that the total Harmonic Distortion (THD) of the of the microgrid voltage is about 10% and the negative and zero sequence component are around 20% of the positive sequence component before compensation. After compensation, the THD remain below 0.5%, whereas, negative and zero sequence components of the voltages remain below 0.02% of the positive sequence component.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Positive Buck-Boost converter is a known DC-DC converter which may be controlled to act as Buck or Boost converter with same polarity of the input voltage. This converter has four switching states which include all the switching states of the above mentioned DC-DC converters. In addition there is one switching state which provides a degree of freedom for the positive Buck-Boost converter in comparison to the Buck, Boost, and inverting Buck-Boost converters. In other words the Positive Buck-Boost Converter shows a higher level of flexibility for its inductor current control compared to the other DC-DC converters. In this paper this extra degree of freedom is utilised to increase the robustness against input voltage fluctuations and load changes. To address this capacity of the positive Buck-Boost converter, two different control strategies are proposed which control the inductor current and output voltage against any fluctuations in input voltage and load changes. Mathematical analysis for dynamic and steady state conditions are presented in this paper and simulation results verify the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new multi-output DC/DC converter topology that has step-up and step-down conversion capabilities. In this topology, several output voltages can be generated which can be used in different applications such as multilevel converters with diode-clamped topology or power supplies with several voltage levels. Steady state and dynamic equations of the proposed multi-output converter have been developed, that can be used for steady state and transient analysis. Two control techniques have been proposed for this topology based on constant and dynamic hysteresis band height control to address different applications. Simulations have been performed for different operating modes and load conditions to verify the proposed topology and its control technique. Additionally, a laboratory prototype is designed and implemented to verify the simulation results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a flying-capacitor-based chopper circuit for dc capacitor voltage equalization in diode-clamped multilevel inverters. Its important features are reduced voltage stress across the chopper switches, possible reduction in the chopper switching frequency, improved reliability, and ride-through capability enhancement. This topology is analyzed using three- and four-level flying-capacitor-based chopper circuit configurations. These configurations are different in capacitor and semiconductor device count and correspondingly reduce the device voltage stresses by half and one-third, respectively. The detailed working principles and control schemes for these circuits are presented. It is shown that, by preferentially selecting the available chopper switch states, the dc-link capacitor voltages can be efficiently equalized in addition to having tightly regulated flying-capacitor voltages around their references. The various operating modes of the chopper are described along with their preferential selection logic to achieve the desired performances. The performance of the proposed chopper and corresponding control schemes are confirmed through both simulation and experimental investigations.