350 resultados para Volcanic plains of Victoria
Resumo:
Hess Rise, in the western Pacific Ocean, formed in the mid-Cretaceous south of the equator and moved north with the Pacific Plate (Lancelot and Larson, 1975; Lancelot, 1978; Valuer et al., 1979). Southern Hess Rise was a volcanic archipelago, at least until late Albian time, after which it subsided to become one of the major aseismic rises in the present western Pacific. A second pulse of volcanic activity apparently occurred in the Campanian-Maastrichtian interval, which may be related to tectonic uplift of Hess Rise (Valuer and Jefferson, this volume). Trachytic rocks underlie 412 meters of carbonate sediments at Site 465 on southern Hess Rise. Twenty-four meters of trachyte were recovered from a 64-meter cored interval. The rocks are relatively homogeneous in texture, color, and composition, indicating that the cored sequence was probably part of only one magmatic event (Seifert et al., this volume). Large (> 5-mm) vesicles and oxidized parts of some flows suggest subaerial or shallow-water extrusions. The rocks are high in silica and relatively rich in Na2O, K2O, and light rare-earth elements. The upper part of the volcanic-rock sequence is a breccia, the fragments cemented by calcite, pyrite, and rare barite. Some of the resultant veins are more than 1 cm thick. In addition to the veins, many vesicles are also filled with these minerals. Brecciation and the number and thickness of veins decrease with depth in the hole. The degree of weathering, as indicated by water content, also decreases with depth.
Resumo:
Abrupt climate changes from 18 to 15 thousand years before present (kyr BP) associated with Heinrich Event 1 (HE1) had a strong impact on vegetation patterns not only at high latitudes of the Northern Hemisphere, but also in the tropical regions around the Atlantic Ocean. To gain a better understanding of the linkage between high and low latitudes, we used the University of Victoria (UVic) Earth System-Climate Model (ESCM) with dynamical vegetation and land surface components to simulate four scenarios of climate-vegetation interaction: the pre-industrial era, the Last Glacial Maximum (LGM), and a Heinrich-like event with two different climate backgrounds (interglacial and glacial). We calculated mega-biomes from the plant-functional types (PFTs) generated by the model to allow for a direct comparison between model results and palynological vegetation reconstructions. Our calculated mega-biomes for the pre-industrial period and the LGM corresponded well with biome reconstructions of the modern and LGM time slices, respectively, except that our pre-industrial simulation predicted the dominance of grassland in southern Europe and our LGM simulation resulted in more forest cover in tropical and sub-tropical South America. The HE1-like simulation with a glacial climate background produced sea-surface temperature patterns and enhanced inter-hemispheric thermal gradients in accordance with the "bipolar seesaw" hypothesis. We found that the cooling of the Northern Hemisphere caused a southward shift of those PFTs that are indicative of an increased desertification and a retreat of broadleaf forests in West Africa and northern South America. The mega-biomes from our HE1 simulation agreed well with paleovegetation data from tropical Africa and northern South America. Thus, according to our model-data comparison, the reconstructed vegetation changes for the tropical regions around the Atlantic Ocean were physically consistent with the remote effects of a Heinrich event under a glacial climate background.
Resumo:
We investigated changes in tropical climate and vegetation cover associated with abrupt climate change during Heinrich Event 1 (HE1, ca. 17.5 ka BP) using two different global climate models: the University of Victoria Earth System-Climate Model (UVic ESCM) and the Community Climate System Model version 3 (CCSM3). Tropical South American and African pollen records suggest that the cooling of the North Atlantic Ocean during HE1 influenced the tropics through a southward shift of the rain belt. In this study, we simulated the HE1 by applying a freshwater perturbation to the North Atlantic Ocean. The resulting slowdown of the Atlantic Meridional Overturning Circulation was followed by a temperature seesaw between the Northern and Southern Hemispheres, as well as a southward shift of the tropical rain belt. The shift and the response pattern of the tropical vegetation around the Atlantic Ocean were more pronounced in the CCSM3 than in the UVic ESCM simulation. For tropical South America, opposite changes in tree and grass cover were modeled around 10° S in the CCSM3 but not in the UVic ESCM. In tropical Africa, the grass cover increased and the tree cover decreased around 15° N in the UVic ESCM and around 10° N in the CCSM3. In the CCSM3 model, the tree and grass cover in tropical Southeast Asia responded to the abrupt climate change during the HE1, which could not be found in the UVic ESCM. The biome distributions derived from both models corroborate findings from pollen records in southwestern and equatorial western Africa as well as northeastern Brazil.
Resumo:
This is a 20-year long database of GPS data collected by geodetic surveys carried out over the seismically and volcanically active eastern Sicily, for a total of more than 6300 measurements. Data have been convertedi nto the international ASCII compressed RINEX standard in order to be imported and processed by any GPS analysis software. Database is provided with an explorer software for navigating into the dataset by spatial (GIS) and temporal queries.
Resumo:
[From Jasper Cropsey Sketch book, 1855-1856]
Resumo:
Description based on: No. 57, published in 1959.
Resumo:
Mode of access: Internet.
Resumo:
List of members in each volume (except v. 6, new ser., v. 27)
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Issued in 40 parts.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Report year ends June 30.
Resumo:
Mode of access: Internet.