891 resultados para Visual-cortex


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of intrinsic cortical connections in processing sensory input and in generating behavioral output is poorly understood. We have examined this issue in the context of the tuning of neuronal responses in cortex to the orientation of a visual stimulus. We analytically study a simple network model that incorporates both orientation-selective input from the lateral geniculate nucleus and orientation-specific cortical interactions. Depending on the model parameters, the network exhibits orientation selectivity that originates from within the cortex, by a symmetry-breaking mechanism. In this case, the width of the orientation tuning can be sharp even if the lateral geniculate nucleus inputs are only weakly anisotropic. By using our model, several experimental consequences of this cortical mechanism of orientation tuning are derived. The tuning width is relatively independent of the contrast and angular anisotropy of the visual stimulus. The transient population response to changing of the stimulus orientation exhibits a slow "virtual rotation." Neuronal cross-correlations exhibit long time tails, the sign of which depends on the preferred orientations of the cells and the stimulus orientation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatio-temporal maps of the occipital cortex of macaque monkeys were analyzed using optical imaging of intrinsic signals. The images obtained during localized visual stimulation (IS) were compared with the images obtained on presentation of a blank screen (IB). We first investigated spontaneous variations of the intrinsic signals by analyzing the 100 IBs for each of the three cortical areas. Slow periodical activation was observed in alternation over the cortical areas. Cross-correlation analysis indicated that synchronization of spontaneous activation only took place within each cortical area, but not between them. When a small, drifting grating (2degreesX2degrees) was presented on the fovea. a dark spot appeared in the optical image at the cortical representation of this retinal location. It spread bilaterally along the border between V1 and V2, continuing as a number of parallel dark bands covering a large area of the lateral surface of V1. Cross-correlation analysis showed that during visual stimulation the intrinsic signals over all of the three cortical areas were synchronized, with in-phase activation of V1 and V2 and anti-phase activation of V4 and V1/V2. The significance of these extensive synergistic and antagonistic interactions between different cortical areas is discussed. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The placement of monocular laser lesions in the adult cat retina produces a lesion projection zone (LPZ) in primary visual cortex (V1) in which the majority of neurons have a normally located receptive field (RF) for stimulation of the intact eye and an ectopically located RF ( displaced to intact retina at the edge of the lesion) for stimulation of the lesioned eye. Animals that had such lesions for 14 - 85 d were studied under halothane and nitrous oxide anesthesia with conventional neurophysiological recording techniques and stimulation of moving light bars. Previous work suggested that a candidate source of input, which could account for the development of the ectopic RFs, was long-range horizontal connections within V1. The critical contribution of such input was examined by placing a pipette containing the neurotoxin kainic acid at a site in the normal V1 visual representation that overlapped with the ectopic RF recorded at a site within the LPZ. Continuation of well defined responses to stimulation of the intact eye served as a control against direct effects of the kainic acid at the LPZ recording site. In six of seven cases examined, kainic acid deactivation of neurons at the injection site blocked responsiveness to lesioned-eye stimulation at the ectopic RF for the LPZ recording site. We therefore conclude that long-range horizontal projections contribute to the dominant input underlying the capacity for retinal lesion-induced plasticity in V1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies have revealed a marked degree of variation in the pyramidal cell phenotype in visual, somatosensory, motor and prefrontal cortical areas in the brain of different primates, which are believed to subserve specialized cortical function. In the present study we carried out comparisons of dendritic structure of layer III pyramidal cells in the anterior and posterior cingulate cortex and compared their structure with those sampled from inferotemporal cortex (IT) and the primary visual area (V1) in macaque monkeys. Cells were injected with Lucifer Yellow in flat-mounted cortical slices, and processed for a light-stable DAB reaction product. Size, branching pattern, and spine density of basal dendritic arbors was determined, and somal areas measured. We found that pyramidal cells in anterior cingulate cortex were more branched and more spinous than those in posterior cingulate cortex, and cells in both anterior and posterior cingulate were considerably larger, more branched, and more spinous than those in area V1. These data show that pyramidal cell structure differs between posterior dysgranular and anterior granular cingulate cortex, and that pyramidal neurons in cingulate cortex have different structure to those in many other cortical areas. These results provide further evidence for a parallel between structural and functional specialization in cortex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previously it has been shown that the branching pattern of pyramidal cells varies markedly between different cortical areas in simian primates. These differences are thought to influence the functional complexity of the cells. In particular, there is a progressive increase in the fractal dimension of pyramidal cells with anterior progression through cortical areas in the occipitotemporal (OT) visual stream, including the primary visual area (V1), the second visual area (V2), the dorsolateral area (DL, corresponding to the fourth visual area) and inferotemporal cortex (IT). However, there are as yet no data on the fractal dimension of these neurons in prosimian primates. Here we focused on the nocturnal prosimian galago (Otolemur garnetti). The fractal dimension (D), and aspect ratio (a measure of branching symmetry), was determined for I I I layer III pyramidal cells in V1, V2, DL and IT. We found, as in simian primates, that the fractal dimension of neurons increased with anterior progression from V1 through V2, DL, and IT. Two important conclusions can be drawn from these results: (1) the trend for increasing branching complexity with anterior progression through OT areas was likely to be present in a common primate ancestor, and (2) specialization in neuron structure more likely facilitates object recognition than spectral processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cortical pyramidal cells, while having a characteristic morphology, show marked phenotypic variation in primates. Differences have been reported in their size, branching structure and spine density between cortical areas. In particular, there is a systematic increase in the complexity of the structure of pyramidal cells with anterior progression through occipito-temporal cortical visual areas. These differences reflect area-specific specializations in cortical circuitry, which are believed to be important for visual processing. However, it remains unknown as to whether these regional specializations in pyramidal cell structure are restricted to primates. Here we investigated pyramidal cell structure in the visual cortex of the tree shrew, including the primary (V1), second (V2) and temporal dorsal (TD) areas. As in primates, there was a trend for more complex branching structure with anterior progression through visual areas in the tree shrew. However, contrary to the trend reported in primates, cells in the tree shrew tended to become smaller with anterior progression through V1, V2 and TD. In addition, pyramidal cells in V1 of the tree shrew are more than twice as spinous as those in primates. These data suggest that variables that shape the structure of adult cortical pyramidal cells differ among species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies have revealed marked differences in the basal dendritic structure of layer III pyramidal cells in the cerebral cortex of adult simian primates. In particular, there is a consistent trend for pyramidal cells of increasing complexity with anterior progression through occipitotemporal cortical visual areas. These differences in pyramidal cell structure, and their systematic nature, are believed to be important for specialized aspects of visual processing within, and between, cortical areas. However, it remains unknown whether this regional specialization in the pyramidal cell phenotype is unique to simians, is unique to primates in general or is widespread amongst mammalian species. In the present study we investigated pyramidal cell structure in the prosimian galago (Otolemur garnetti). We found, as in simians, that the basal dendritic arbors of pyramidal cells differed between cortical areas. More specifically, pyramidal cells became progressively more spinous through the primary (V1), second (V2), dorsolateral (DL) and inferotemporal ( IT) visual areas. Moreover, pyramidal neurons in V1 of the galago are remarkably similar to those in other primate species, in spite of large differences in the sizes of this area. In contrast, pyramidal cells in inferotemporal cortex are quite variable among primate species. These data suggest that regional specialization in pyramidal cell phenotype was a likely feature of cortex in a common ancestor of simian and prosimian primates, but the degree of specialization varies between species. Copyright (C) 2005 S. Karger AG, Basel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gamma activity to stationary grating stimuli was studied non-invasively using MEG recordings in humans. Using a spatial filtering technique, we localized gamma activity to primary visual cortex. We tested the hypothesis that spatial frequency properties of visual stimuli may be related to the temporal frequency characteristics of the associated cortical responses. We devised a method to assess temporal frequency differences between stimulus-related responses that typically exhibit complex spectral shapes. We applied this methodology to either single-trial (induced) or time-averaged (evoked) responses in four frequency ranges (0-40, 20-60, 40-80 and 60-100 Hz) and two time windows (either the entire duration of stimulus presentation or the first second following stimulus onset). Our results suggest that stimuli of varying spatial frequency induce responses that exhibit significantly different temporal frequency characteristics. These effects were particularly accentuated for induced responses in the classical gamma frequency band (20-60 Hz) analyzed over the entire duration of stimulus presentation. Strikingly, examining the first second of the responses following stimulus onset resulted in significant loss in stimulus specificity, suggesting that late signal components contain functionally relevant information. These findings advocate a functional role of gamma activity in sensory representation. We suggest that stimulus specific frequency characteristics of MEG signals can be mapped to processes of neuronal synchronization within the framework of coupled dynamical systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using magnetoencephalography, we studied the spatiotemporal properties of cortical responses in terms of event-related synchronization and event-related desynchronization to a range of stripe patterns in subjects with no neurological disorders. These stripes are known for their tendency to induce a range of abnormal sensations, such as illusions, nausea, dizziness, headache and attacks of pattern-sensitive epilepsy. The optimal stimulus must have specific physical properties, and maximum abnormalities occur at specific spatial frequency and contrast. Despite individual differences in the severity of discomfort experienced, psychophysical studies have shown that most observers experience some degree of visual anomaly on viewing such patterns. In a separate experiment, subjects reported the incidence of illusions and discomfort to each pattern. We found maximal cortical power in the gamma range (30-60 Hz) confined to the region of the primary visual cortex in response to patterns of 2-4 cycles per degree, peaking at 3 cycles per degree. This coincides with the peak of mean illusions and discomfort, also maximal for patterns of 2-4 cycles per degree. We show that gamma band activity in V1 is a narrow band function of spatial frequency. We hypothesize that the intrinsic properties of gamma oscillations may underlie visual discomfort and play a role in the onset of seizures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

About 10% of patients with Creutzfeldt-Jakob syndrome (disease) (CJD) exhibit visual symptoms at presentation and approximately 50% during the course of the disease. The objectives of the present study were to determine, in two subtypes of CJD, viz., sporadic CJD (sCJD) and variant CJD (vCJD), the degree of pathological change in the primary visual cortex (area V1) and the extent to which pathology in V1 may influence visual function. The vacuolation (‘spongiform change’), surviving neurons, glial cell nuclei, and deposits of prion protein (PrP) were quantified in V1 obtained post-mortem in nine cases of sCJD and eleven cases of vCJD. In sCJD, the vacuoles and PrP deposits were regularly distributed along the cortex parallel to the pia mater in clusters with a mean dimension from 450 to 1000 µm. Across the cortex, the vacuolation was most severe in laminae II/III and the glial cell reaction in laminae V/VI. Surviving neurons were most abundant in laminae II/III while PrP deposition either affected all laminae equally or was maximal in lamina II/III. In vCJD, the vacuoles and diffuse PrP deposits were distributed relatively uniformly parallel to the pia mater while the florid deposits were consistently distributed in regular clusters. Across V1, the vacuoles either exhibited a bimodal distribution or were uniformly distributed. The diffuse PrP deposits occurred most frequently in laminae II/III while the florid deposits were more generally distributed. The data suggest that in both sCJD and vCJD, pathological changes in area V1 may affect the processing of visual information in laminae II/III and its transmission from V1 to V2 and to subcortical visual areas. In addition, the data suggest an association in sCJD between the developing pathology and the functional domains of V1 while in vCJD the pathology is more uniformly distributed. These changes could be a factor in the development of poor visual acuity, visual field defects, cortical blindness, diplopia, and vertical gaze palsy that have been observed in Creutzfeldt-Jakob syndrome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physiological and neuroimaging studies provide evidence to suggest that attentional mechanisms operating within the fronto-parietal network may exert top–down control on early visual areas, priming them for forthcoming sensory events. The believed consequence of such priming is enhanced task performance. Using the technique of magnetoencephalography (MEG), we investigated this possibility by examining whether attention-driven changes in cortical activity are correlated with performance on a line-orientation judgment task. We observed that, approximately 200 ms after a covert attentional shift towards the impending visual stimulus, the level of phase-resetting (transient neural coherence) within the calcarine significantly increased for 2–10 Hz activity. This was followed by a suppression of alpha activity (near 10 Hz) which persisted until the onset of the stimulus. The levels of phase-resetting, alpha suppression and subsequent behavioral performance varied between subjects in a systematic fashion. The magnitudes of phase-resetting and alpha-band power were negatively correlated, with high levels of coherence associated with high levels of performance. We propose that top–down attentional control mechanisms exert their initial effects within the calcarine through a phase-resetting within the 2–10 Hz band, which in turn triggers a suppression of alpha activity, priming early visual areas for incoming information and enhancing behavioral performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pathological changes in striate (B17, V1) and extrastriate (B18, V2) visual cortex were studied in variant Creutzfeldt-Jakob disease (vCJD). No differences in densities of vacuoles or surviving neurons were observed in B17 and B18 but densities of glial cell nuclei and deposits of prion protein (PrP) were greater in B18. PrP deposit densities in B17 and B18 were positively correlated. Diffuse deposit density in B17 was negatively correlated with the density of surviving neurons in B18. The vacuoles either exhibited a density peak in laminae II/III and V/VI or were more uniformly distributed across the laminae. Diffuse deposits were most frequent in laminae II/III and florid deposits more generally distributed. In B18, the surviving neurons were more consistently bimodally distributed and the glial cell nuclei most abundant in laminae V/VI than in B17. Hence, both striate and extrastriate visual cortex is affected by the pathology of vCJD, the pathological changes being most severe in B18. Neuronal degeneration in B18 appears to be associated with diffuse PrP deposit formation in B17. These data suggest that the short cortico-cortical connections between B17 and B18 and the pathways to subcortical visual areas are compromised in vCJD.