971 resultados para Visual disabilities
Resumo:
O estudo descreve as prevalências de deficiências segundo características demográficas e sócio-econômicas, bem como as suas causas. A pesquisa utilizou dados de inquéritos de base populacional realizados em áreas do Estado de São Paulo, Brasil, em 2002 e 2003, com amostragem estratificada por conglomerados. Os entrevistados que referiram deficiências foram a população estudada segundo as variáveis que compõem o banco de dados. A prevalência de alguma deficiência foi de 110,8 ; deficiência visual, 62 ; deficiência auditiva, 44 e a deficiência física de 13,3 . As prevalências das deficiências variaram com a idade; sexo e escolaridade. A prevalência de deficiências auditiva e física foi maior entre os homens. A principal causa das deficiências foi a doença. As causas externas também foram umas das principais causadoras de incapacidades. As deficiências aumentaram com a idade, foram mais prevalentes em mulheres e em pessoas com menor escolaridade, sendo sua principal causa as doenças e as causas externas.
Resumo:
Single Limb Stance under visual and proprioceptive disturbances is largely used in clinical settings in order to improve balance in a wide range of functional disabilities. However, the proper role of vision and proprioception in SLS is not completely understood. The objectives of this study were to test the hypotheses that when ankle proprioception is perturbed, the role of vision in postural control increases according to the difficulty of the standing task. And to test the effect of vision during postural adaptation after withdrawal of the somesthetic perturbation during double and single limb stance. Eleven males were submitted to double (DLS) and single limb (SLS) stances under conditions of normal or reduced vision, both with normal and perturbed proprioception. Center of pressure parameters were analyzed across conditions. Vision had a main effect in SLS, whereas proprioception perturbation showed effects only during DLS. Baseline stability was promptly achieved independently of visual input after proprioception reintegration. In conclusion, the role of vision increases in SLS. After proprioception reintegration, vision does not affect postural recovery. Balance training programs must take that into account. © 2011 Elsevier Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Educação Escolar - FCLAR
Resumo:
The goal of this study was to investigate the effects of manipulation of the characteristics of visual stimulus on postural control in dyslexic children. A total of 18 dyslexic and 18 non-dyslexic children stood upright inside a moving room, as still as possible, and looked at a target at different conditions of distance between the participant and a moving room frontal wall (25-150 cm) and vision (full and central). The first trial was performed without vision (baseline). Then four trials were performed in which the room remained stationary and eight trials with the room moving, lasting 60 s each. Mean sway amplitude, coherence, relative phase, and angular deviation were calculated. The results revealed that dyslexic children swayed with larger magnitude in both stationary and moving conditions. When the room remained stationary, all children showed larger body sway magnitude at 150 cm distance. Dyslexic children showed larger body sway magnitude in central compared to full vision condition. In the moving condition, body sway magnitude was similar between dyslexic and non-dyslexic children but the coupling between visual information and body sway was weaker in dyslexic children. Moreover, in the absence of peripheral visual cues, induced body sway in dyslexic children was temporally delayed regarding visual stimulus. Taken together, these results indicate that poor postural control performance in dyslexic children is related to how sensory information is acquired from the environment and used to produce postural responses. In conditions in which sensory cues are less informative, dyslexic children take longer to process sensory stimuli in order to obtain precise information, which leads to performance deterioration. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Sexuality and sex education for visually impaired people are still a few subjects studied in the field of Education. The aim of this study was to investigate sexuality and sex education of the visually impaired, through an interview with an adult woman, blind from birth, for further analysis of thematic content. It is a descriptive-qualitative case study. The following categories were described in the results: (1) Concept of sexuality, (2) Sexual Education, (3) Sexuality and Disability, (4) Social issues and prejudice. The data confirm other studies showing the existence of social prejudice, sexual myths, no sex education or sex education with superficial information and difficulties predominantly psychosocial and not organic in relation to sexuality. We conclude that sexuality and sex education are important issues that should be considered in the general education of people with disabilities.
Resumo:
The hippotherapy is a therapeutic and educational method that uses the horse within an interdisciplinary approach in the areas of health, education and riding, seeking the biopsychosocial development of people with disabilities and/or special needs. The method generates the practitioner positive effects, such as physical, social and psychological benefits. The goal of this study was to investigate alterations with a practitioner with visual impairment during their participation in a hippotherapy program. The study is characterized by a qualitative and descriptive research, in the form of case study. Data were collected through interviews with the mother of the practitioner and filming, photographs and systematic observation of the sessions. Improvements were found in the behavior of practicing at home, and there was progress in motor performance, and self-confidence generated by the domain horse. It is concluded that the hippotherapy program generated physical, psychological and social benefits to the practitioner.
Resumo:
Objective: There is convincing evidence that phonological, orthographic and semantic processes influence children’s ability to learn to read and spell words. So far only a few studies investigated the influence of implicit learning in literacy skills. Children are sensitive to the statistics of their learning environment. By frequent reading they acquire implicit knowledge about the frequency of letter patterns in written words, and they use this knowledge during reading and spelling. Additionally, semantic connections facilitate to storing of words in memory. Thus, the aim of the intervention study was to implement a word-picture training which is based on statistical and semantic learning. Furthermore, we aimed at examining the training effects in reading and spelling in comparison to an auditory-visual matching training and a working memory training program. Participants and Methods: One hundred and thirty-two children aged between 8 and 11 years participated in training in three weekly session of 12 minutes over 8 weeks, and completed other assessments of reading, spelling, working memory and intelligence before and after training. Results: Results revealed in general that the word-picture training and the auditory-visual matching training led to substantial gains in reading and spelling performance in comparison to the working-memory training. Although both children with and without learning difficulties profited in their reading and spelling after the word-picture training, the training program led to differential effects for the two groups. After the word-picture training on the one hand, children with learning difficulties profited more in spelling as children without learning difficulties, on the other hand, children without learning difficulties benefit more in word comprehension. Conclusions: These findings highlight the need for frequent reading trainings with semantic connections in order to support the acquisition of literacy skills.
Resumo:
Assistive technology involving voice communication is used primarily by people who are deaf, hard of hearing, or who have speech and/or language disabilities. It is also used to a lesser extent by people with visual or motor disabilities. A very wide range of devices has been developed for people with hearing loss. These devices can be categorized not only by the modality of stimulation [i.e., auditory, visual, tactile, or direct electrical stimulation of the auditory nerve (auditory-neural)] but also in terms of the degree of speech processing that is used. At least four such categories can be distinguished: assistive devices (a) that are not designed specifically for speech, (b) that take the average characteristics of speech into account, (c) that process articulatory or phonetic characteristics of speech, and (d) that embody some degree of automatic speech recognition. Assistive devices for people with speech and/or language disabilities typically involve some form of speech synthesis or symbol generation for severe forms of language disability. Speech synthesis is also used in text-to-speech systems for sightless persons. Other applications of assistive technology involving voice communication include voice control of wheelchairs and other devices for people with mobility disabilities.
Resumo:
Developmental learning disabilities such as dyslexia and dyscalculia have a high rate of co-occurrence in pediatric populations, suggesting that they share underlying cognitive and neurophysiological mechanisms. Dyslexia and other developmental disorders with a strong heritable component have been associated with reduced sensitivity to coherent motion stimuli, an index of visual temporal processing on a millisecond time-scale. Here we examined whether deficits in sensitivity to visual motion are evident in children who have poor mathematics skills relative to other children of the same age. We obtained psychophysical thresholds for visual coherent motion and a control task from two groups of children who differed in their performance on a test of mathematics achievement. Children with math skills in the lowest 10% in their cohort were less sensitive than age-matched controls to coherent motion, but they had statistically equivalent thresholds to controls on a coherent form control measure. Children with mathematics difficulties therefore tend to present a similar pattern of visual processing deficit to those that have been reported previously in other developmental disorders. We speculate that reduced sensitivity to temporally defined stimuli such as coherent motion represents a common processing deficit apparent across a range of commonly co-occurring developmental disorders.
Resumo:
Brain-computer interfaces (BCI) have the potential to restore communication or control abilities in individuals with severe neuromuscular limitations, such as those with amyotrophic lateral sclerosis (ALS). The role of a BCI is to extract and decode relevant information that conveys a user's intent directly from brain electro-physiological signals and translate this information into executable commands to control external devices. However, the BCI decision-making process is error-prone due to noisy electro-physiological data, representing the classic problem of efficiently transmitting and receiving information via a noisy communication channel.
This research focuses on P300-based BCIs which rely predominantly on event-related potentials (ERP) that are elicited as a function of a user's uncertainty regarding stimulus events, in either an acoustic or a visual oddball recognition task. The P300-based BCI system enables users to communicate messages from a set of choices by selecting a target character or icon that conveys a desired intent or action. P300-based BCIs have been widely researched as a communication alternative, especially in individuals with ALS who represent a target BCI user population. For the P300-based BCI, repeated data measurements are required to enhance the low signal-to-noise ratio of the elicited ERPs embedded in electroencephalography (EEG) data, in order to improve the accuracy of the target character estimation process. As a result, BCIs have relatively slower speeds when compared to other commercial assistive communication devices, and this limits BCI adoption by their target user population. The goal of this research is to develop algorithms that take into account the physical limitations of the target BCI population to improve the efficiency of ERP-based spellers for real-world communication.
In this work, it is hypothesised that building adaptive capabilities into the BCI framework can potentially give the BCI system the flexibility to improve performance by adjusting system parameters in response to changing user inputs. The research in this work addresses three potential areas for improvement within the P300 speller framework: information optimisation, target character estimation and error correction. The visual interface and its operation control the method by which the ERPs are elicited through the presentation of stimulus events. The parameters of the stimulus presentation paradigm can be modified to modulate and enhance the elicited ERPs. A new stimulus presentation paradigm is developed in order to maximise the information content that is presented to the user by tuning stimulus paradigm parameters to positively affect performance. Internally, the BCI system determines the amount of data to collect and the method by which these data are processed to estimate the user's target character. Algorithms that exploit language information are developed to enhance the target character estimation process and to correct erroneous BCI selections. In addition, a new model-based method to predict BCI performance is developed, an approach which is independent of stimulus presentation paradigm and accounts for dynamic data collection. The studies presented in this work provide evidence that the proposed methods for incorporating adaptive strategies in the three areas have the potential to significantly improve BCI communication rates, and the proposed method for predicting BCI performance provides a reliable means to pre-assess BCI performance without extensive online testing.