930 resultados para Visual and auditory processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides a review of central auditory processing disorders in children.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we introduce a novel high-level visual content descriptor which is devised for performing semantic-based image classification and retrieval. The work can be treated as an attempt to bridge the so called “semantic gap”. The proposed image feature vector model is fundamentally underpinned by the image labelling framework, called Collaterally Confirmed Labelling (CCL), which incorporates the collateral knowledge extracted from the collateral texts of the images with the state-of-the-art low-level image processing and visual feature extraction techniques for automatically assigning linguistic keywords to image regions. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicates that our proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this research, a cross-model paradigm was chosen to test the hypothesis that affective olfactory and auditory cues paired with neutral visual stimuli bearing no resemblance or logical connection to the affective cues can evoke preference shifts in those stimuli. Neutral visual stimuli of abstract paintings were presented simultaneously with liked and disliked odours and sounds, with neutral-neutral pairings serving as controls. The results confirm previous findings that the affective evaluation of previously neutral visual stimuli shifts in the direction of contingently presented affective auditory stimuli. In addition, this research shows the presence of conditioning with affective odours having no logical connection with the pictures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the past decade, brain–computer interfaces (BCIs) have rapidly developed, both in technological and application domains. However, most of these interfaces rely on the visual modality. Only some research groups have been studying non-visual BCIs, primarily based on auditory and, sometimes, on somatosensory signals. These non-visual BCI approaches are especially useful for severely disabled patients with poor vision. From a broader perspective, multisensory BCIs may offer more versatile and user-friendly paradigms for control and feedback. This chapter describes current systems that are used within auditory and somatosensory BCI research. Four categories of noninvasive BCI paradigms are employed: (1) P300 evoked potentials, (2) steady-state evoked potentials, (3) slow cortical potentials, and (4) mental tasks. Comparing visual and non-visual BCIs, we propose and discuss different possible multisensory combinations, as well as their pros and cons. We conclude by discussing potential future research directions of multisensory BCIs and related research questions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While there has been a fair amount of research investigating children’s syntactic processing during spoken language comprehension, and a wealth of research examining adults’ syntactic processing during reading, as yet very little research has focused on syntactic processing during text reading in children. In two experiments, children and adults read sentences containing a temporary syntactic ambiguity while their eye movements were monitored. In Experiment 1, participants read sentences such as, ‘The boy poked the elephant with the long stick/trunk from outside the cage’ in which the attachment of a prepositional phrase was manipulated. In Experiment 2, participants read sentences such as, ‘I think I’ll wear the new skirt I bought tomorrow/yesterday. It’s really nice’ in which the attachment of an adverbial phrase was manipulated. Results showed that adults and children exhibited similar processing preferences, but that children were delayed relative to adults in their detection of initial syntactic misanalysis. It is concluded that children and adults have the same sentence-parsing mechanism in place, but that it operates with a slightly different time course. In addition, the data support the hypothesis that the visual processing system develops at a different rate than the linguistic processing system in children.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The amygdala plays a critical role in determining the emotional significance of sensory stimuli and the production of fear-related responses. Large amygdalar lesions have been shown to practically abolish innate defensiveness to a predator; however, it is not clear how the different amygdalar systems participate in the defensive response to a live predator. Our first aim was to provide a comprehensive analysis of the amygdalar activation pattern during exposure to a live cat and to a predator-associated context. Accordingly, exposure to a live predator up-regulated Fos expression in the medial amygdalar nucleus (MEA) and in the lateral and posterior basomedial nuclei, the former responding to predator-related pheromonal information and the latter two nuclei likely to integrate a wider array of predatory sensory information, ranging from olfactory to non-olfactory ones, such as visual and auditory sensory inputs. Next, we tested how the amygdalar nuclei most responsive to predator exposure (i.e. the medial, posterior basomedial and lateral amygdalar nuclei) and the central amygdalar nucleus (CEA) influence both unconditioned and contextual conditioned anti-predatory defensive behavior. Medial amygdalar nucleus lesions practically abolished defensive responses during cat exposure, whereas lesions of the posterior basomedial or lateral amygdalar nuclei reduced freezing and increased risk assessment displays (i.e. crouch sniff and stretch postures), a pattern of responses compatible with decreased defensiveness to predator stimuli. Moreover, the present findings suggest a role for the posterior basomedial and lateral amygdalar nuclei in the conditioning responses to a predator-related context. We have further shown that the CEA does not seem to be involved in either unconditioned or contextual conditioned anti-predatory responses. Overall, the present results help to clarify the amygdalar systems involved in processing predator-related sensory stimuli and how they influence the expression of unconditioned and contextual conditioned anti-predatory responses. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many neuropsychiatric conditions have a common set of neurological substrates associated with the integration of sensorimotor processing. The teneurins are a recently described family of proteins that play a significant role in visual and auditory development. Encoded on the terminal exon of the teneurin genes is a family of bioactive peptides, termed teneurin C-terminal associated peptides (TCAP), which regulate mood-disorder associated behaviors. Thus, the teneurin-TCAP system could represent a novel neurological system underlying the origins of a number of complex neuropsychiatric conditions. However, it is not known if TCAP-1 exerts its effects as part of a direct teneurin function, whereby TCAP represents a functional region of the larger teneurin protein, or if it has an independent role, either as a splice variant or post-translational proteolytic cleavage product of teneurin. In this study, we show that TCAP-1 can be transcribed as a smaller mRNA transcript. After translation, further processing yields a smaller 15. kDa protein containing the TCAP-1 region. In the mouse hippocampus, immunoreactive (ir) TCAP-1 is exclusively localized to the pyramidal layers of the CA1, CA2 and CA3 regions. Although the localization of TCAP and teneurin in hippocampal regions is similar, they are distinct within the cell as most ir-teneurin is found at the plasma membrane, whereas ir-TCAP-1 is predominantly found in the cytosol. Moreover, in mouse embryonic hippocampal cell culture, FITC-labeled TCAP-1 binds to the plasma membrane and is taken up into the cytosol via dynamin-dependent caveolae-mediated endocytosis. Our data provides novel evidence that TCAP-1 is structurally and functionally distinct from the larger teneurins. © 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Behavioral tests of auditory processing have been applied in schools and highlight the association between phonological awareness abilities and auditory processing, confirming that low performance on phonological awareness tests may be due to low performance on auditory processing tests. Objective To characterize the auditory middle latency response and the phonological awareness tests and to investigate correlations between responses in a group of children with learning disorders. Methods The study included 25 students with learning disabilities. Phonological awareness and auditory middle latency response were tested with electrodes placed on the left and right hemispheres. The correlation between the measurements was performed using the Spearman rank correlation coefficient. Results There is some correlation between the tests, especially between the Pa component and syllabic awareness, where moderate negative correlation is observed. Conclusion In this study, when phonological awareness subtests were performed, specifically phonemic awareness, the students showed a low score for the age group, although for the objective examination, prolonged Pa latency in the contralateral via was observed. Negative weak to moderate correlation for Pa wave latency was observed, as was positive weak correlation for Na-Pa amplitude.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study shows that different neural activity during mental imagery and abstract mentation can be assigned to well-defined steps of the brain's information-processing. During randomized visual presentation of single, imagery-type and abstract-type words, 27 channel event-related potential (ERP) field maps were obtained from 25 subjects (sequence-divided into a first and second group for statistics). The brain field map series showed a sequence of typical map configurations that were quasi-stable for brief time periods (microstates). The microstates were concatenated by rapid map changes. As different map configurations must result from different spatial patterns of neural activity, each microstate represents different active neural networks. Accordingly, microstates are assumed to correspond to discrete steps of information-processing. Comparing microstate topographies (using centroids) between imagery- and abstract-type words, significantly different microstates were found in both subject groups at 286–354 ms where imagery-type words were more right-lateralized than abstract-type words, and at 550–606 ms and 606–666 ms where anterior-posterior differences occurred. We conclude that language-processing consists of several, well-defined steps and that the brain-states incorporating those steps are altered by the stimuli's capacities to generate mental imagery or abstract mentation in a state-dependent manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coarse semantic encoding and broad categorization behavior are the hallmarks of the right cerebral hemisphere's contribution to language processing. We correlated 40 healthy subjects' breadth of categorization as assessed with Pettigrew's category width scale with lateral asymmetries in perceptual and representational space. Specifically, we hypothesized broader category width to be associated with larger leftward spatial biases. For the 20 men, but not the 20 women, this hypothesis was confirmed both in a lateralized tachistoscopic task with chimeric faces and a random digit generation task; the higher a male participant's score on category width, the more pronounced were his left-visual field bias in the judgement of chimeric faces and his small-number preference in digit generation ("small" is to the left of "large" in number space). Subjects' category width was unrelated to lateral displacements in a blindfolded tactile-motor rod centering task. These findings indicate that visual-spatial functions of the right hemisphere should not be considered independent of the same hemisphere's contribution to language. Linguistic and spatial cognition may be more tightly interwoven than is currently assumed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: A prerequisite for high performance in motor tasks is the acquisition of egocentric sensory information that must be translated into motor actions. A phenomenon that supports this process is the Quiet Eye (QE) defined as long final fixation before movement initiation. It is assumed that the QE facilitates information processing, particularly regarding movement parameterization. Aims: The question remains whether this facilitation also holds for the information-processing stage of response selection and – related to perception crucial – stage of stimulus identification. Method: In two experiments with sport science students, performance-enhancing effects of experimentally manipulated QE durations were tested as a function of target position predictability and target visibility, thereby selectively manipulating response selection and stimulus identification demands, respectively. Results: The results support the hypothesis of facilitated information processing through long QE durations since in both experiments performance-enhancing effects of long QE durations were found under increased processing demands only. In Experiment 1, QE duration affected performance only if the target position was not predictable and positional information had to be processed over the QE period. In Experiment 2, in a full vs. no target visibility comparison with saccades to the upcoming target position induced by flicker cues, the functionality of a long QE duration depended on the visual stimulus identification period as soon as the interval falls below a certain threshold. Conclusions: The results corroborate earlier findings that QE efficiency depends on demands put on the visuomotor system, thereby furthering the assumption that the phenomenon supports the processes of sensorimotor integration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Brn-3 subfamily of POU–domain transcription factor genes consists of three highly homologous members—Brn-3a, Brn-3b, and Brn-3c—that are expressed in sensory neurons and in a small number of brainstem nuclei. This paper describes the role of Brn-3c in auditory and vestibular system development. In the inner ear, the Brn-3c protein is found only in auditory and vestibular hair cells, and the Brn-3a and Brn-3b proteins are found only in subsets of spiral and vestibular ganglion neurons. Mice carrying a targeted deletion of the Brn-3c gene are deaf and have impaired balance. These defects reflect a complete loss of auditory and vestibular hair cells during the late embryonic and early postnatal period and a secondary loss of spiral and vestibular ganglion neurons. Together with earlier work demonstrating a loss of trigeminal ganglion neurons and retinal ganglion cells in mice carrying targeted disruptions in the Brn-3a and Brn-3b genes, respectively, the Brn-3c phenotype reported here demonstrates that each of the Brn-3 genes plays distinctive roles in the somatosensory, visual, and auditory/vestibular systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different cDNA clones encoding a rat homeobox gene and the mouse homologue OG-12 were cloned from adult rat brain and mouse embryo mRNA, respectively. The predicted amino acid sequences of the proteins belong to the paired-related subfamily of homeodomain proteins (Prx homeodomains). Hence, the gene was named Prx3 and the mouse and rat genes are indicated as mPrx3 and rPrx3, respectively. In the mouse as well as in the rat, the predicted Prx3 proteins share the homeodomain but have three different N termini, a 12-aa residue variation in the C terminus, and contain a 14-aa residue motif common to a subset of homeodomain proteins, termed the “aristaless domain.” Genetic mapping of Prx3 in the mouse placed this gene on chromosome 3. In situ hybridization on whole mount 12.5-day-old mouse embryos and sections of rat embryos at 14.5 and 16.5 days postcoitum revealed marked neural expression in discrete regions in the lateral and medial geniculate complex, superior and inferior colliculus, the superficial gray layer of the superior colliculus, pontine reticular formation, and inferior olive. In rat and mouse embryos, nonneuronal structures around the oral cavity and in hip and shoulder regions also expressed the Prx3 gene. In the adult rat brain, Prx3 gene expression was restricted to thalamic, tectal, and brainstem structures that include relay nuclei of the visual and auditory systems as well as other ascending systems conveying somatosensory information. Prx3 may have a role in specifying neural systems involved in processing somatosensory information, as well as in face and body structure formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sound localization relies on the neural processing of monaural and binaural spatial cues that arise from the way sounds interact with the head and external ears. Neurophysiological studies of animals raised with abnormal sensory inputs show that the map of auditory space in the superior colliculus is shaped during development by both auditory and visual experience. An example of this plasticity is provided by monaural occlusion during infancy, which leads to compensatory changes in auditory spatial tuning that tend to preserve the alignment between the neural representations of visual and auditory space. Adaptive changes also take place in sound localization behavior, as demonstrated by the fact that ferrets raised and tested with one ear plugged learn to localize as accurately as control animals. In both cases, these adjustments may involve greater use of monaural spectral cues provided by the other ear. Although plasticity in the auditory space map seems to be restricted to development, adult ferrets show some recovery of sound localization behavior after long-term monaural occlusion. The capacity for behavioral adaptation is, however, task dependent, because auditory spatial acuity and binaural unmasking (a measure of the spatial contribution to the “cocktail party effect”) are permanently impaired by chronically plugging one ear, both in infancy but especially in adulthood. Experience-induced plasticity allows the neural circuitry underlying sound localization to be customized to individual characteristics, such as the size and shape of the head and ears, and to compensate for natural conductive hearing losses, including those associated with middle ear disease in infancy.