155 resultados para Vineyards
Resumo:
Grapevine winter hardiness is a key factor in vineyard success in many cool climate wine regions. Winter hardiness may be governed by a myriad of factors in addition to extreme weather conditions – e.g. soil factors (texture, chemical composition, moisture, drainage), vine water status, and yield– that are unique to each site. It was hypothesized that winter hardiness would be influenced by certain terroir factors , specifically that vines with low water status [more negative leaf water potential (leaf ψ)] would be more winter hardy than vines with high water status (more positive leaf ψ). Twelve different vineyard blocks (six each of Riesling and Cabernet franc) throughout the Niagara Region in Ontario, Canada were chosen. Data were collected during the growing season (soil moisture, leaf ψ), at harvest (yield components, berry composition), and during the winter (bud LT50, bud survival). Interpolation and mapping of the variables was completed using ArcGIS 10.1 (ESRI, Redlands, CA) and statistical analyses (Pearson’s correlation, principal component analysis, multilinear regression) were performed using XLSTAT. Clear spatial trends were observed in each vineyard for soil moisture, leaf ψ, yield components, berry composition, and LT50. Both leaf ψ and berry weight could predict the LT50 value, with strong positive correlations being observed between LT50 and leaf ψ values in eight of the 12 vineyard blocks. In addition, vineyards in different appellations showed many similarities (Niagara Lakeshore, Lincoln Lakeshore, Four Mile Creek, Beamsville Bench). These results suggest that there is a spatial component to winter injury, as with other aspects of terroir, in the Niagara region.
Resumo:
Multicoloured Asian Lady Beetles (MALB) and 7-spot Lady Beetles that infect vineyards can secrete alkyl-methoxypyrazines when they are processed with the grapes, resulting in wines containing a taint. The main methoxypyrazine associated with this taint is 3-isopropyl-2-methoxypyrazine (IPMP). The wines are described as having aroma and flavours of peanut butter, peanut shells, asparagus and earthy which collectively, have become known as “ladybug taint”. To date, there are no known fining agents used commercially added to juice or wine that are effective in removing this taint. The goal of this project was to use previously identified proteins with an ability to bind to methoxypyrazines at low pH, and subsequently develop a binding assay to test the ability of these proteins to bind to and remove methoxypyrazines from grape juice. The piglet odorant binding protein (plOBP) and mouse major urinary protein (mMUP) were identified, cloned and expressed in the Pichia pastoris expression system. Protein expression was induced using methanol and the proteins were subsequently purified from the induction media using anion exchange chromatography. The purified proteins were freeze-dried and rehydrated prior to use in the methoxypyrazine removal assay. The expression and purification system resulted in yields of approximately 78% of purified plOBP and 62% of purified mMUP from expression to rehydration. Purified protein values were 87 mg of purified plOPB per litre of induction media and 19 mg of purified mMUP per litre of induction medium. In order to test the ability of the protein to bind to the MPs, an MP removal assay was developed. In the assay, the purified protein is incubated with either IPMP or 3-isobutyl-2-methoxypyrazine (IBMP) for two hours in either buffer or grape juice. Bentonite is then used to capture the protein-MP complex and the bentonite-protein-MP complex is then removed from solution by filtration. Residual MP is measured in solution following the MP removal assay and compared to that in the starting solution by Gas Chromatography Mass Spectrometry (GC/MS). GC/MS results indicated that the mMUP was capable of removing IBMP and IPMP from 300 ng/L in buffer pH 4.0, buffer pH 3.5 and Riesling Juice pH 3.5 down to the limit of quantification of the instrument, which is 6ng/L and 2ng/L for IBMP and IPMP, respectively. The results for the plOBP showed that although it could remove some IBMP, it was only approximately 50-70 ng/L more than bentonite treatment followed by filtration, resulting in approximately 100 ng/L of the MPs being left in solution. pIOBP was not able to remove IPMP in buffer pH 3.5 using this system above that removed by bentonite alone. As well, the pIOBP was not able to remove any additional MPs from Chardonnay juice pH 3.5 above that already removed by the bentonite and filtration alone. The mouse MUP was shown to be a better candidate protein for removal of MPs from juice using this system.
Resumo:
Inniskillin Wines was founded by Karl Kaiser and Donald Ziraldo in 1975 in Niagara-on-the-Lake, Ontario. They had met the previous year, when Karl Kaiser, a winemaker and chemist, purchased some grapes from Donald Ziraldo, who owned and operated Ziraldo Nurseries. The two shared a vision of producing better quality Canadian wines and formed a partnership, with Kaiser making the wine and Ziraldo serving as company President. In 1975, they were granted a winery license by the LCBO, the first one granted since 1929. The company name Inniskillin was derived from the Inniskilling Fusilliers, an Irish regiment whose Colonel once owned the land that Ziraldo Nurseries occupied. This was the original site of the winery, although in 1978 the winery moved to the Brae Burn Estate, their current location. In 1982 the winery expanded by 50 acres with the addition of the Montague Vineyard, and another 50 acres was acquired in 1991. The Niagara-on-the-Lake vineyard produces single vineyards bottlings of Chardonnay, Pinot Noir, Merlot and Pinot Grigio/Pinot Gris. In 1984, Karl Kaiser began producing icewine from Vidal grapes frozen naturally on the vine. Inniskillin garnered international acclaim for the quality of their icewines, receiving the prestigious Grand Prix d’Honneur at VinExpo in 1991, for their 1989 Vidal icewine. This established Inniskillin as a producer of world class wines, while also raising the profile of Canadian wines in general. The company branched out their operations, first acquiring vineyards in the Napa Valley in 1989 to form Inniskillin Napa (producing wines under the Terra label), and in 1994 establishing Inniskillin Okanagan in the Okanagan Valley in British Columbia. The Napa valley venture ceased in the mid 90’s, while Inniskillin Okanagan continues to operate. In 2006, Karl Kaiser and Donald Ziraldo left Inniskillin. Kaiser retired, while Ziraldo became chair of the Vineland Research and Innovation Center (2006-2011), and remains involved in the wine industry. In 2007, Bruce Nicholson joined Inniskillin as winemaker. Nicholson continues to produce award-winning wines under the Inniskillin label, receiving the top award, the Premio Speciale Gran Award, at Vinitaly 2009 for his 2006 Gold Vidal and his 2006 Sparkling Vidal Icewine. In 2012, he received several awards for the 2008 Riesling Icewine, including gold at the International Wine and Spirits Competition in London, UK, the San Francisco International Wine Championships, and Selections Mondials des Vins Canada.
Resumo:
Donald J. P. Ziraldo, C.M., BSc., LLD was born in St. Catharines, Ontario on October 13, 1948 to Fredrick and Irma (Schiratti) Ziraldo. He graduated Denis Morris High School in St. Catharines in 1967, and received his B.Sc. in Agriculture at the University of Guelph in 1971. In 1974, Ziraldo was running Ziraldo Nurseries when he met Austrian born schoolteacher, chemist and winemaker Karl J. Kaiser. They realized that there was a gap in the premium varietal wine market and decided to plant a premium traditional European variety of grape vine species, the Vitis vinifera. This was an innovation in the Niagara region because the current wine producers were not using premium European grapes at the time. Ziraldo and Kaiser founded and then formally incorporated Inniskillin Wines Inc. in Niagara-on-the-Lake, Ontario on July 31, 1975. Ziraldo successfully lobbied General George Kitching, CEO of the LCBO, for a winery license. In 1975, Kitching granted him a winery license, the first in Ontario since Prohibition ended. From the beginning, there was a division of labour where Kaiser focused on the winemaking and Ziraldo focused on the marketing and promotion of the wines. Ziraldo also became president of the company. Ziraldo and Kaiser worked on improving their winemaking techniques and promoting their products and company. Ziraldo has been called ‘one of the founding fathers of the Canadian wine industry’, and it is widely acknowledged that both men played a large role in the success and growth of the Canadian wine industry. Together they pioneered the estate winery movement in Canada. A major turning point Inniskillin came in 1984 when Karl Kaiser successfully harvested the first Icewine crop from frozen grapes on the vine and bottled Eiswein Vidal (Icewine). In 1990, Inniskillin received worldwide recognition for this Icewine when their 1989 Vidal Icewine won the most prestigious award in the wine world, the Grand Prix d’Honneur, given at Vinexpo in France. This victory has been called ‘the award heard round the world’ and it launched Inniskillin into the international wine arena. At the same time, this helped lift the profile of Canadian wines in general. Inniskillin not only became Canada’s leading producer of Icewine, but it also became known for producing ‘one of the world’s great wines’. After the 1990 award, Ziraldo began a major public relations campaign to promote Inniskillin and build Icewine into a worldwide brand. He travelled broadly every year to promote the brand and products and networked extensively with politicians, celebrities, chefs, sommeliers, etc. To ensure worldwide and long-term success, Ziraldo introduced Icewine to Asia and the United States which were new markets. He developed a new Icewine glass with George Riedel. Tony Aspler has called Ziraldo ‘Canada’s Wine Ambassador’. Ziraldo was President of Inniskillin Wines Inc. (Niagara) from 1975 to 2006. In 1992, Inniskillin merged with Cartier Wines, and in 1993 Cartier Inniskillin Vintners Inc. merged with T.G. Bright & Co. Limited, forming the new company Vincor International Inc. Inniskillin wines was now a subsidiary of Vincor. Ziraldo became a Director at Vincor International Inc. from 1993 to 2004. From 1989 to the mid 1990s, Ziraldo also became President of Inniskillin Napa, in Napa Valley, California. Inniskillin purchased Napa Valley vineyards and produced wines under the Terra label. In 1994, Ziraldo set up a subsidiary estate winery of Inniskillin in Oliver, British Columbia which was called Inniskillin Okanagan Vineyards Inc. He became President of the winery. This started as a partnership between Inniskillin and the local Inkameep Indian Band in the Okanagan. In 2006, Ziraldo left Inniskillin and since that time he has been involved in other Icewine related ventures such as running Ziraldo Estate Winery and producing Ziraldo Riesling Icewine 2007. He also is in partnership with the Niagara based Equifera Estate Winery to produce Equifera Icewine. His most recent projects include planting Picolit grapes in his parent’s hometown, in a project called Picolit Di Fagagna and becoming Managing Director of the Senhora Do Convento Port Winery in Portugal. Donald Ziraldo was instrumental in the creation of the Vintners Quality Alliance (VQA) in Ontario and was its founding Chair from 1988-1995. The VQA was established as a regulatory and appellation system which secured the quality and origin of Canadian wines made under this system. The VQA designation and bottle label gave the consumer confidence that the wines they were purchasing were 100% local products. The VQA system was set up first in Ontario and then in British Columbia.
Resumo:
Two photograph negatives of Donald Ziraldo driving a tractor through vineyards.
Resumo:
Constructed, beginning in 1576 by the architect Domenico Fontana, the Villa Montalto, named after the Cardinal Felice Peretti Montalto, was for a long rime described as having surpassed the splendor of all the villas in Rome. Located to the north of the city in an arid and practically deserted zone, between vineyards, Antique ruins and early Christian churches, the villa occupies a privileged place within the history of urban landscape. Elected pope in 1585, under the name of Sixtus V, Felice made his villa the largest that had ever existed inside of the walls, establishing the upper city of the Monti, the Città Felice, as a new economic and religious center, crystallizing his ambitions for a major territorial reform. By simultaneously focusing on the gardens, the painted decorations, the literature, and the architecture of the villa, but also on its economic and social role, this article proposes an original interpretation of the Villa Montalto, demonstrating the fundamental importance of the imagined landscape in the Rome of Sixtus V. Through the ideal space of his villa, the Pope sought to propose a new model of economic and social development necessary to the reform of the then poor and insalubrious Rome. The ultimate goal was none other than the reestablishment of a Christian Eden on Earth. Sixtus V thus placed himself within the lineage which, since Adam, had attempted through the virtue of agricultural labor, to atone for the original sin.
Resumo:
Like elsewhere also in Kabul, Afghanistan urban and peri-urban agriculture (UPA) has often been accused of being resource inefficient and unsustainable causing negatives externalities to community health and to the surroundings. These arise from the inappropriate management and use of agricultural inputs, including often pesticides and inter-city wastes containing heavy metal residues and pathogens. To address these concerns, parallel studies with the aims of quantification of carbon (C), nitrogen (N), phosphorus (P) and potassium (K) horizontal and vertical fluxes; the assessment of heavy metal and pathogen contaminations of UPA produce, and an economic analysis of cereal, vegetable and grape production systems conducted for two years in UPA of Kabul from April 2008 to October 2009. The results of the studies from these three UPA diverse production systems can be abridged as follows: Biennial net balances in vegetable production systems were positive for N (80 kg ha-1 ), P (75 kg ha-1) and C (3,927 kg ha-1), negative for K (-205 kg ha-1), whereas in cereal production systems biennial horizontal balances were positive for P (20 kg ha-1 ) and C (4,900 kg ha-1) negative for N (-155 kg ha-1) and K (-355 kg ha-1) and in vineyards corresponding values were highly positive for N (295 kg ha-1), P (235 kg ha-1), C (3,362 kg ha-1) and slightly positive for K (5 kg ha-1). Regardless of N and C gaseous emissions, yearly leaching losses of N and P in selected vegetable gardens varied from 70 - 205 kg N ha-1 and 5 - 10 kg P ha-1. Manure and irrigation water contributed on average 12 - 79% to total Inputs of N, P, K and C, 10 - 53% to total inputs of C in the gardens and fields. The elevated levels of heavy metal and pathogen loads on fresh UPA vegetables reflected contamination from increasing traffic in the city, deposits of the past decades of war, lacking collection and treatment of raw inter-city wastes which call for solutions to protect consumer and producer health and increase reliability of UPA productions. A cost-revenue analysis of all inputs and outputs of cereal, vegetable and grapes production systems over two years showed substantial differences in net UPA household income. To confirm these results, more detailed studies are needed, but tailoring and managing the optimal application of inputs to crop needs will significantly enhance farmer’s better revenues as will as environmental and produce quality.
Resumo:
This article compares the mid-nineteenth century landscape of the River Tordera delta with the present day landscape, based, above all, on the changes that have occurred in land use and land cover. The mid 19th century landscape was reconstructed using data obtained from the amillaraments (land inventories) and other historical documents. Present-day land use and cover was established through photo interpretation and field work. The most important changes detected concern the almost complete disappearance of certain crops, such as vineyards, which were very important in the 19th century; the expansion of forest in place of abandoned tilled land and the increase in built up areas, which, taken together, produce a highly fragmented landscape pattern
Resumo:
Extensive fragmentation of the sagebrush shrubsteppe of western North America could be contributing to observed population declines of songbirds in sagebrush habitat. We examined whether habitat fragmentation impacts the reproduction of songbirds in sagebrush edge habitat near agriculture, and if potential impacts vary depending on the adjacent crop type. Specifically, we evaluated whether nest abundance and nest survival varied between orchard edge habitat, vineyard edge habitat, and interior habitat. We then examined whether the local nest predator community and vegetation could explain the differences detected. We detected fewer nests in edge than interior habitat. Nest abundance per songbird was also lower in edge than interior habitat, although only adjacent to vineyards. Nest predation was more frequent in orchard edge habitat than vineyard edge or interior habitat. Predators identified with nest cameras were primarily snakes, however, reduced nest survival in orchard edge habitat was not explained by differences in the abundance of snakes or any other predator species identified. Information theoretic analysis of daily survival rates showed that greater study plot shrub cover and lower grass height at nests were partially responsible for the lower rate of predation-specific daily nest survival rate (PDSR) observed in orchard edge habitat, but additional factors are likely important. Results of this study suggest that different crop types have different edge effects on songbirds nesting in sagebrush shrubsteppe, and that these reproductive edge effects may contribute to observed declines of these species. Habitat managers should avoid the creation of new orchard-sagebrush habitat edges to avoid further impacts on already declining songbird populations.
Resumo:
To manage agroecosystems for multiple ecosystem services, we need to know whether the management of one service has positive, negative, or no effects on other services. We do not yet have data on the interactions between pollination and pest-control services. However, we do have data on the distributions of pollinators and natural enemies in agroecosystems. Therefore, we compared these two groups of ecosystem service providers, to see if the management of farms and agricultural landscapes might have similar effects on the abundance and richness of both. In a meta-analysis, we compared 46 studies that sampled bees, predatory beetles, parasitic wasps, and spiders in fields, orchards, or vineyards of food crops. These studies used the proximity or proportion of non-crop or natural habitats in the landscapes surrounding these crops (a measure of landscape complexity), or the proximity or diversity of non-crop plants in the margins of these crops (a measure of local complexity), to explain the abundance or richness of these beneficial arthropods. Compositional complexity at both landscape and local scales had positive effects on both pollinators and natural enemies, but different effects on different taxa. Effects on bees and spiders were significantly positive, but effects on parasitoids and predatory beetles (mostly Carabidae and Staphylinidae) were inconclusive. Landscape complexity had significantly stronger effects on bees than it did on predatory beetles and significantly stronger effects in non-woody rather than in woody crops. Effects on richness were significantly stronger than effects on abundance, but possibly only for spiders. This abundance-richness difference might be caused by differences between generalists and specialists, or between arthropods that depend on non-crop habitats (ecotone species and dispersers) and those that do not (cultural species). We call this the ‘specialist-generalist’ or ‘cultural difference’ mechanism. If complexity has stronger effects on richness than abundance, it might have stronger effects on the stability than the magnitude of these arthropod-mediated ecosystem services. We conclude that some pollinators and natural enemies seem to have compatible responses to complexity, and it might be possible to manage agroecosystems for the benefit of both. However, too few studies have compared the two, and so we cannot yet conclude that there are no negative interactions between pollinators and natural enemies, and no trade-offs between pollination and pest-control services. Therefore, we suggest a framework for future research to bridge these gaps in our knowledge.
Resumo:
The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.
Resumo:
Este trabalho teve por objetivo realizar um levantamento em 40 vinhedos de 'Niagara Rosada' nos municípios de Jundiaí e Louveira-SP, sendo metade sobre o porta-enxerto 'Ripária do Traviú' e outra sobre o 'IAC 766'. Determinaram-se, em cada vinhedo, a produtividade, a duração do ciclo, o número de cachos e de ramos produtivos por planta, as características físicas dos cachos e bagas, e o acúmulo de nutrientes pelos cachos. Avaliaram-se nos cachos amostrados a massa da matéria fresca, o comprimento e a largura dos cachos e baga, e diâmetro do pedicelo. Os cachos de cada vinhedo amostrado foram secos em estufa e posteriormente submetidos à análise química para determinar os teores de macro e micronutrientes, visando a estimar o acúmulo de nutrientes por tonelada de uva. Constatou-se um comportamento semelhante entre os porta-enxertos para os dados de produtividade, duração do ciclo, número de cachos e ramos produtivos, sendo de, respectivamente, 11.100kg ha-1, 134 dias, 13 cachos e 9 ramos produtivos. Quanto às características físicas, os valores médios da massa da matéria fresca, comprimento e largura dos cachos foram de, respectivamente, 209g, 12 e 6,8cm; massa da matéria fresca, comprimento e largura das bagas, e diâmetro do pedicelo de, respectivamente, 4,3g; 19,9; 18,2 e 3,2mm. Quanto ao acúmulo de nutrientes, concluiu-se que a cultivar Niagara Rosada enxertada sobre 'Ripária do Traviú' apresentou maior acúmulo de P, Fe e Zn, enquanto sobre o porta-enxerto 'IAC 766' houve maior acúmulo de Mn. em ambos os porta-enxertos, a 'Niagara Rosada' apresentou a seguinte escala de acúmulo de nutrientes em ordem decrescente: K>N>P>Ca>S>Mg>B>Fe>Mn>Cu>Zn.
Resumo:
Realizou-se nos municípios de Jundiaí e Louveira-SP um levantamento do estado nutricional e de produtividade de 20 vinhedos de 'Niagara Rosada' enxertada sobre o porta-enxerto IAC 766 e outros 20 enxertadas sobre o 'Ripária do Traviú'. Coletaram-se amostras de solo a 0-20 e 20-40 cm de profundidade na linha e na entrelinha de plantio e amostras de folha completa, limbo e pecíolo nas épocas de pleno florescimento e no início da maturação das bagas, visando correlacionar com os dados de produtividade. Verificou-se para o porta-enxerto IAC 766 correlações significativas entre a produtividade com os resultados das análises de solo e de folhas. A baixa produtividade verificada esteve relacionada ao excesso de nutrientes no solo, especialmente cálcio e magnésio, em função da calagem e adubação serem realizadas sem levarem em consideração a análise do solo. A produtividade correlacionou-se positivamente com os teores de potássio no solo, a relação K/Mg nas folhas e os teores de potássio nas folhas; e negativamente com a relação (Ca+Mg)/K no solo e os teores de cálcio e magnésio nas folhas, exibindo o antagonismo entre o magnésio e o potássio.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)