995 resultados para Vidro bioativo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of composite materials and alternative is being increased every day, as it becomes more widespread awareness that the use of renewable and not harmful to the environment is part of a new environmentally friendly model. Since its waste (primarily fiberglass) can not be easily recycled by the difficulty that still exists in this process, since they have two phases mixed, a polymeric matrix thermoset difficult to recycle because it is infusible and phase of fiber reinforcements. Thermoset matrix composites like Polyester + fiberglass pose a threat due to excessive discharge. Aiming to minimize this problem, aimed to reuse the composite Polyester + fiber glass, through the wastes obtained by the grinding of knifes and balls. These residues were incorporated into the new composite Polyester/Fiberglass for hot compression mold and compared tribological to composites with filler CaCO3, generally used as filler, targeting a partial replacement of CaCO3 by such waste. The composites were characterized by thermal analysis (TGA, DSC and DMA), by the surface integrity (roughness determination, contact angle and surface energy), mechanical properties (hardness) and tribological tests (wear and coefficient of dynamic friction) in order to evaluate the effect of loads and characterize these materials for applications that can take, in the tribological point of view since waste Polyester + fiberglass has great potential for replacement of CaCO3

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aims to evaluate the mechanical properties of polymer matrix composites reinforced with sisal fabric bidirectional tissue (Agave sisalana,) and E-glass fibers, containing the following configuration: a polymer matrix hybrid composite (Polyester Resin orthophalic) reinforced with three (3) layers of glass fibers and alternating-2 (two) layers of bidirectional sisal fabric, and finally a composite of polymer matrix reinforced with five (5) layers of glass fiber mat-type E. For this purpose as first step, the preparation of by sisal, since they are not on the market. The composites were made by manual lamination (Hand lay-up) and evaluated for tensile properties and three point bending both in the dry, and wet conditions aswele as immersed in oil. Macroscopic and microscopic characteristics of the materialsweve awalysed, after the completion of the mechanical tests. After the studies, it was proven that the sisal fiber decreases the tensile stiffness of the material above 50% for both situations studied the tensile strength of the material decreases by approximately 40% for the cases mentioned, and when compared to the specific strength stiffness values drop to 14.6% and 29.02% respectively for the dry state only. Constants for bending the values were are to approximately 50% to 25% for strength and stiffness of the material for the cases dry, wet and immersed in oil. Under the influence of tension fluids do not interfere in the stiffness of the material for the bending tests, the same does not occur with the resistance, and these values are modified only in the cases stiffness and flexural strength

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal insulation is used to protect the heated or cooled surfaces by the low thermal conductivity materials. The rigid ricin polyurethane foams (PURM) are used for thermal insulation and depend on the type and concentration of blowing agent. Obtaining PURM occurs by the use of polyol, silicone, catalyst and blowing agent are pre -mixed, reacting with the isocyanate. The glass is reusable, returnable and recyclable heat insulating material, whose time of heat dissipation determines the degree of relaxation of its structure; and viscosity determines the conditions for fusion, operating temperatures, annealing, etc. The production of PURM composites with waste glass powder (PV) represents economical and renewable actions of manufacturing of thermal insulating materials. Based on these aspects, the study aimed to produce and characterize the PURM composites with PV, whose the mass percentages were 5, 10, 20, 30, 40 and 50 wt%. PURM was obtained commercially, while the PV was recycled from the tailings of the stoning process of a glassmaking; when the refining process was applied to obtain micrometer particles. The PURM + PV composites were studied taking into account the standard sample of pure PURM and the influence of the percentage of PV in this PURM matrix. The results of the chemical, physical and morphological characterization were discussed taking into account the difference in the microstructural morphology of the PURM+PV composites and the pure PURM, as well the results of the physicochemical, mechanical e thermophysical tests by values obtained of density, hardness, compressive strength, specific heat, thermal conductivity and diffusivity. In general, the structure of pure PURM showed large, elongated and regular pores, while PURM+PV composites showed irregular, small and rounded pores with shapeless cells. This may have contributed to reducing their mechanical strength, especially for PURM - PV50. The hardness and density were found to have a proportional relationship with the PV content on PURM matrix. The specific heat, thermal diffusivity and thermal conductivity showed proportional relationship to each other. So, this has been realized that the increasing the PV content on PURM matrix resulted in the rise of diffusivity and thermal conductivity and the decrease of the specific heat. However, the values obtained by the PURM composites were similar the values of pure PURM, mainly the PURM-PV5 and PURM-PV10. Therefore, these composites can be applied like thermal insulator; furthermore, their use could reduce the production costs and to preserve the environment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dental caries consists in a multifactorial and dynamic process. The knowledge of the ionic interactions among dental tissues and dental biofilm make possible its understanding as a process that can be stopped. Recently, the use of sealants have lost its function as preventive agent and passed to be argued as a possible therapeutical agent. This happens by hindering the substratum flow to the lesion inner and, therefore, controls the advance of the process. This study aimed to evaluate glass ionomer cement as a not invasive technique of treatment in occlusal caries without clinical cavitation, but with dentinal involvement. The research was accomplished using a controlled clinical trial with two groups (experimental and control) in 38 subjects (8-18 years) with 51 molars. The teeth of the experimental group were sealed with glass ionomer cement (Vidrion-R, S.S.White, Juiz de Fora, Brazil) and the molars control did not suffer intervention. The experimental group was followed by a year and the control by 8 months due the progression of the carious injury. Both groups were reevaluated to each 4 months with the use of clinical, radiographic and laser fluorescence (DIAGNOdent®) examination. The analysis of the clinical evaluation did not observe a significant difference between experimental and control groups. However, analysis with radiographic and laser fluorescence (DIAGNOdent®) examination observed a significant difference (p> 0,05) between groups, demonstrating a wors condition to the group without intervention. The results suggest that glass ionomer cement as sealant can be efficient to paralyze dentinal caries without clinical cavitation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O presente trabalho tem como objetivo investigar as características de filmes de SnO2 depositados em substrato de vidro borosilicato por um processo de silk-screen modificado para obtenção de espessura fina compatível com a aplicação em células solares policristalinas de baixo custo. O filme de SnO2 é um dos mais apropriados para obtenção de vidro TCO (transparent conductive oxide) para uso em células solares devido a sua baixa resistividade elétrica e alta transmitância, sendo quimicamente inerte, mecanicamente duro e tem resistência a altas temperaturas, o que facilita então a calcinação das amostras entre 500º C a 550º C. Os filmes foram obtidos a partir de uma solução precursora básica, preparada pela dissolução de SnCl2.2H2O em Etanol (99,5 %). Foi realizado um planejamento fatorial 2(3-1) para analisar a influência dos parâmetros concentração da solução precursora (CETN), temperatura de calcinação (TC) e taxa de aquecimento (tX) na calcinação, sendo a concentração CETN o parâmetro que apresentou maior efeito sobre os parâmetros de respostas investigados: espessura do filme (ω), resistividade de superfície (ρ) e a transmitância relativa (θ). Foi possível obter com a metodologia utilizada, filmes com espessuras da ordem de 1 Nm com resistividade de superfície de 10 / e transmitância relativa entre 70 e 80 %.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os cimentos ionoméricos representam importante opção de material restaurador em Odontologia e sua adesão à estrutura dental, diminuindo a infiltração marginal, somada à liberação de flúor, inibindo o metabolismo de microrganismos acidogênicos e favorecendo a remineralização dental, podem diminuir a ocorrência de cárie secundária. A aplicação tópica de géis acidulados ou neutros contendo flúor tem sido largamente utilizada em Odontologia. No entanto, este procedimento pode afetar a integridade dos materiais restauradores, aumentando sua rugosidade e a retenção de placa bacteriana. Dessa forma, o presente estudo avaliou o período de tempo no qual o cimento ionomérico Vitremer mantém sua capacidade inibitória sobre Streptococcus mutans ATCC 25175 e a adesão dos mesmos sobre a superfície do material, bem como a influência da aplicação tópica de flúor acidulado e neutro sobre esses parâmetros microbiológicos e as características superficiais daquele material. Verificou-se que a atividade antimicrobiana do cimento ionomérico Vitremer se mantém por aproximadamente quatro dias e não é recuperada com o uso de flúor gel acidulado ou neutro. Observou-se, também, que Streptococcus mutans ATCC 25175 adere ao material restaurador testado sendo que a aplicação tópica de flúor não influenciou esta adesão. As características superficiais desses materiais não se alteraram com a aplicação dos géis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and objectives: Glass ampoules have been widely used in packaging injection drugs. Glass has important characteristics that allow it to be widely used in fabrication of recipients for drugs and other sterile substances. However, contamination of solutions with glass microparticles on breaking open glass ampoules, the presence of metals, percutaneous injury, and biological contamination justify the need of educational materials to orient the manipulation of ampoules. Contents: Glass microparticles generated in the snap-opening of ampoules, as well as metals that contaminate their contents can be aspirated and injected through several routes. Exogenous contaminations by glass and metals can reach several sites in the organism. They trigger organic reactions that may give rise to injuries. Opening ampoules can expose professionals to the risk of percutaneous injuries. These lesions increase the biological risk as they are the gateway for viruses and bacteria. Ampoules opening systems (VIBRAC and OPC) have been developed to reduce the incidence of such accidents. Alternative materials to glass may represent an interesting strategy to increase safety. The use of prefilled syringes may represent an evolution regarding safety. Conclusions: Team training and information provided by the pharmaceutical industry on the use of ampoules are fundamental in the prophylaxis of accidents and contaminations. The search for safer materials to replace glass is also important. © 2011 Elsevier Editora Ltda.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Pesquisa e Desenvolvimento (Biotecnologia Médica) - FMB

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)