732 resultados para Victorian Certificate of Applied Learning
Resumo:
Learning object economies are marketplaces for the sharing and reuse of learning objects (LO). There are many motivations for stimulating the development of the LO economy. The main reason is the possibility of providing the right content, at the right time, to the right learner according to adequate quality standards in the context of a lifelong learning process; in fact, this is also the main objective of education. However, some barriers to the development of a LO economy, such as the granularity and editability of LO, must be overcome. Furthermore, some enablers, such as learning design generation and standards usage, must be promoted in order to enhance LO economy. For this article, we introduced the integration of distributed learning object repositories (DLOR) as sources of LO that could be placed in adaptive learning designs to assist teachers’ design work. Two main issues presented as a result: how to access distributed LO, and where to place the LO in the learning design. To address these issues, we introduced two processes: LORSE, a distributed LO searching process, and LOOK, a micro context-based positioning process, respectively. Using these processes, the teachers were able to reuse LO from different sources to semi-automatically generate an adaptive learning design without leaving their virtual environment. A layered evaluation yielded good results for the process of placing learning objects from controlled learning object repositories into a learning design, and permitting educators to define different open issues that must be covered when they use uncontrolled learning object repositories for this purpose. We verified the satisfaction users had with our solution
Resumo:
The identification and integration of reusable and customizable CSCL (Computer Supported Collaborative Learning) may benefit from the capture of best practices in collaborative learning structuring. The authors have proposed CLFPs (Collaborative Learning Flow Patterns) as a way of collecting these best practices. To facilitate the process of CLFPs by software systems, the paper proposes to specify these patterns using IMS Learning Design (IMS-LD). Thus, teachers without technical knowledge can particularize and integrate CSCL tools. Nevertheless, the support of IMS-LD for describing collaborative learning activities has some deficiencies: the collaborative tools that can be defined in these activities are limited. Thus, this paper proposes and discusses an extension to IMS-LD that enables to specify several characteristics of the use of tools that mediate collaboration. In order to obtain a Unit of Learning based on a CLFP, a three stage process is also proposed. A CLFP-based Unit of Learning example is used to illustrate the process and the need of the proposed extension.
Resumo:
When applying a Collaborative Learning Flow Pattern (CLFP) to structure sequences of activities in real contexts, one of the tasks is to organize groups of students according to the constraints imposed by the pattern. Sometimes,unexpected events occurring at runtime force this pre-defined distribution to be changed. In such situations, an adjustment of the group structures to be adapted to the new context is needed. If the collaborative pattern is complex, this group redefinitionmight be difficult and time consuming to be carried out in real time. In this context, technology can help on notifying the teacher which incompatibilitiesbetween the actual context and the constraints imposed by the pattern. This chapter presents a flexible solution for supporting teachers in the group organization profiting from the intrinsic constraints defined by a CLFPs codified in IMS Learning Design. A prototype of a web-based tool for the TAPPS and Jigsaw CLFPs and the preliminary results of a controlled user study are alsopresented as a first step towards flexible technological systems to support grouping tasks in this context.
Resumo:
Online learning provides the opportunity to work on academic tasks at any time at the same time as doing other activities, such as using in web 2.0 tools. This study identifies factors that contribute to success in online learning from the students¿ perspective and their relationship with time patterns. A survey of learning outputs was used to find relationships between students¿ satisfaction, knowledge acquisition and knowledge transfer with time for working on academic tasks. In this study, 199 students from a university in Mexico completed the survey. Findings suggest that knowledge transfer has a significant association with the number of hours online per day, hours spent on social networks and the use made of e-learning during working hours. Learner satisfaction has a strong relationship with the time in years a learner has been using the Internet and the number of hours devoted to the course per week. The findings of this research will be helpful for faculty and instructional designers for implementing learning strategies.
Resumo:
Many species are able to learn to associate behaviours with rewards as this gives fitness advantages in changing environments. Social interactions between population members may, however, require more cognitive abilities than simple trial-and-error learning, in particular the capacity to make accurate hypotheses about the material payoff consequences of alternative action combinations. It is unclear in this context whether natural selection necessarily favours individuals to use information about payoffs associated with nontried actions (hypothetical payoffs), as opposed to simple reinforcement of realized payoff. Here, we develop an evolutionary model in which individuals are genetically determined to use either trial-and-error learning or learning based on hypothetical reinforcements, and ask what is the evolutionarily stable learning rule under pairwise symmetric two-action stochastic repeated games played over the individual's lifetime. We analyse through stochastic approximation theory and simulations the learning dynamics on the behavioural timescale, and derive conditions where trial-and-error learning outcompetes hypothetical reinforcement learning on the evolutionary timescale. This occurs in particular under repeated cooperative interactions with the same partner. By contrast, we find that hypothetical reinforcement learners tend to be favoured under random interactions, but stable polymorphisms can also obtain where trial-and-error learners are maintained at a low frequency. We conclude that specific game structures can select for trial-and-error learning even in the absence of costs of cognition, which illustrates that cost-free increased cognition can be counterselected under social interactions.
Resumo:
This paper reviews the policy learning literature in political science. In recent years, the number of publications on learning in the political realm increased dramatically. Researchers have focused on how policymakers and administrators adapt policies based on learning processes or experiences. Thereby, learning has been discussed in very different ways. Authors have referred to learning in the context of ideas, understood as deeply held beliefs, and, as change and adaptation of policy instruments. Two other strands of literature have taken into consideration learning, namely the diffusion literature and research on transfer, which put forward learning to understand who learns from whom and what. Opposed to these views, political learning emphasizes the adaptation of new strategies by policymakers over the transfer of knowledge or broad ideas. In this approach, learning occurs due to the failure of existing policies, increasing problem pressure, scientific innovations, or a combination of these elements.
Resumo:
The recognition of prior experiential learning (RPEL) involves the assessment ofskills and knowledge acquired by an individual through previous experience, which isnot necessarily related to an academic context. RPEL practices are far from generalisedin higher education, and there is a lack of specific guidelines on how to implement RPLprograms in particular settings, such as management education or online programs. TheRPEL pilot program developed in a Spanish virtual university is used throughout thearticle as the basis for further reflection on the design and implementation of RPEL inonline postgraduate education in the business field. The role of competences as a centraltheoretical foundation for RPEL is explained, and the context and characteristics of theRPEL program described. Special attention is paid to the key elements of the program¿sdesign and to the practical aspects of its implementation. The results of the program areassessed and general conclusions and suggestions for further research are discussed.
Resumo:
Peer-reviewed
Resumo:
http://www.eurodl.org/.
Resumo:
Feedback-related negativity (FRN) is an ERP component that distinguishes positive from negative feedback. FRN has been hypothesized to be the product of an error signal that may be used to adjust future behavior. In addition, associative learning models assume that the trial-to-trial learning of cueoutcome mappings involves the minimization of an error term. This study evaluated whether FRN is a possible electrophysiological correlate of this error term in a predictive learning task where human subjects were asked to learn different cueoutcome relationships. Specifically, we evaluated the sensitivity of the FRN to the course of learning when different stimuli interact or compete to become a predictor of certain outcomes. Importantly, some of these cues were blocked by more informative or predictive cues (i.e., the blocking effect). Interestingly, the present results show that both learning and blocking affect the amplitude of the FRN component. Furthermore, independent analyses of positive and negative feedback event-related signals showed that the learning effect was restricted to the ERP component elicited by positive feedback. The blocking test showed differences in the FRN magnitude between a predictive and a blocked cue. Overall, the present results show that ERPs that are related to feedback processing correspond to the main predictions of associative learning models. ■