937 resultados para Viability Kernel
Resumo:
This work aims to evaluate the feasibility of using image-based cytometry (IBC) in the analysis of algal cell quantification and viability, using Pseudokirchneriella subcapitata as a cell model. Cell concentration was determined by IBC to be in a linear range between 1 × 105 and 8 × 106 cells mL−1. Algal viability was defined on the basis that the intact membrane of viable cells excludes the SYTOX Green (SG) probe. The disruption of membrane integrity represents irreversible damage and consequently results in cell death. Using IBC, we were able to successfully discriminate between live (SG-negative cells) and dead algal cells (heat-treated at 65 °C for 60 min; SG-positive cells). The observed viability of algal populations containing different proportions of killed cells was well correlated (R 2 = 0.994) with the theoretical viability. The validation of the use of this technology was carried out by exposing algal cells of P. subcapitata to a copper stress test for 96 h. IBC allowed us to follow the evolution of cell concentration and the viability of copper-exposed algal populations. This technology overcomes several main drawbacks usually associated with microscopy counting, such as labour-intensive experiments, tedious work and lack of the representativeness of the cell counting. In conclusion, IBC allowed a fast and automated determination of the total number of algal cells and allowed us to analyse viability. This technology can provide a useful tool for a wide variety of fields that utilise microalgae, such as the aquatic toxicology and biotechnology fields.
Resumo:
Coccidioidomycosis is an emerging fungal disease in Brazil; adequate maintenance and authentication of Coccidioides isolates are essential for research into genetic diversity of the environmental organisms, as well as for understanding the human disease. Seventeen Coccidioides isolates maintained under mineral oil since 1975 in the Instituto de Medicina Tropical de São Paulo (IMTSP) culture collection, Brazil, were evaluated with respect to their viability, morphological characteristics and genetic features in order to authenticate these fungal cultures. Only five isolates were viable after almost 30 years, showing typical morphological characteristics, and sequencing analysis using Coi-F and Coi-R primers revealed 99% identity with Coccidioides genera. These five isolates were then preserved in liquid nitrogen and sterile water, and remained viable after two years of storage under these conditions, maintaining the same features.
Resumo:
SUMMARY Inflammation due to Shigella flexneri can cause damage to the colonic mucosa and cell death by necrosis and apoptosis. This bacteria can reach the bloodstream in this way, and the liver through portal veins. Hypoxia is a condition present in many human diseases, and it may induce bacterial translocation from intestinal lumen. We studied the ability of S. flexneri to invade rat hepatocytes and Caco-2 cells both in normoxic and hypoxic microenvironments, as well as morphological and physiological alterations in these cells after infection under hypoxia. We used the primary culture of rat hepatocytes as a model of study. We analyzed the following parameters in normoxic and hypoxic conditions: morphology, cell viability, bacterial recovery and lactate dehydrogenase (LDH) released. The results showed that there were fewer bacteria within the Caco-2 cells than in hepatocytes in normoxic and hypoxic conditions. We observed that the higher the multiplicity of infection (MOI) the greater the bacterial recovery in hepatocytes. The hypoxic condition decreased the bacterial recovery in hepatocytes. The cytotoxicity evaluated by LDH released by cells was significantly higher in cells submitted to hypoxia than normoxia. Caco-2 cells in normoxia released 63% more LDH than hepatocytes. LDH increased 164% when hepatocytes were submitted to hypoxia and just 21% when Caco-2 cells were in the same condition. The apoptosis evaluated by Tunel was significantly higher in cells submitted to hypoxia than normoxia. When comparing hypoxic cells, we obtained more apoptotic hepatocytes than apoptotic Caco-2 cells. Concluding our results contribute to a better knowledge of interactions between studied cells and Shigella flexneri. These data may be useful in the future to define strategies to combat this virulent pathogen.
Resumo:
3rd Historic Mortars Conference, 11-14 September 2013, Glasgow, Scotland
Resumo:
The in vitro activity of thiabendazole on Ascaris lumbricoides eggs, which were recovered from uteri of worm excreted after chemotherapeutic treatment, was studied. Four concentrations of the drug were used: 1 -- 2.5 -- 5 -- and 10 ppm during 24, 48 and 72 hours of exposure. Subsequently, the eggs were centrifuged, washed three times and H2SO4 0.1N was added. The eggs were maintained in an incubator for 20 days at 28°C. Finally, the percentage of embryonated eggs was determined under a lightmicroscope at a 100X magnification. After 48 and 72 hours of thiabendazole exposure, at a concentration of 10ppm, the drug showed complete inhibition of egg embryonation.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Twenty Coccidioides immitis strains were evaluated. Only 5 of the 20 strains kept under mineral oil maintained their viability while all 5 subcultures preserved in water remained viable and none of the 13 subcultures kept in soil were viable. A 519 bp PCR product from the csa gene confirmed the identity of the strains.
Resumo:
The important chemical and food properties conferred to P. angulata make it necessary to conduct studies in seed conservation. This study evaluated the effect of priming of P. angulata seed for varying periods and storage conditions. Lots of seeds were stored in a refrigerator and in ambient conditions for up to 24 months. Some of these seeds were primed before or after storage. The results show that there was variation in moisture content. The germination rate and germination rate index remained high in ambient conditions when primed up to 24 months.
Resumo:
OBJECTIVE: Initial studies with tricyclic antidepressants demonstrated that they jeopardize the immune system activity. Recent studies suggested that selective serotonin reuptake inhibitors would have stimulating immunological effects. Here, we explored the in vitro immunological effects of two antidepressants used in clinical practice, paroxetine (selective serotonin reuptake inhibitor) and bupropion (norepinephrine and dopamine reuptake inhibitor). METHOD: Peripheral blood samples were obtained from 16 healthy volunteers and the peripheral blood mononuclear cells were isolated and cultured in vitro. We evaluated the effects of bupropion and paroxetine on cell viability as well as the ability to suppress phytohemagglutinin-induced lymphocyte proliferation. RESULTS: Both antidepressants produced neither significant effect on cell viability nor on T-cell proliferation. CONCLUSIONS: This could be of valuable information for the clinical practice when these drugs are administered. These results indicate a more favorable effect of such psychopharmacological drugs when compared to reported immunological effects associated with tryciclic antidepressants.
Resumo:
CAP1/Prss8 is a membrane-bound serine protease involved in the regulation of several different effectors, such as the epithelial sodium channel ENaC, the protease-activated receptor PAR2, the tight junction proteins, and the profilaggrin polypeptide. Recently, the V170D and the G54-P57 deletion mutations within the CAP1/Prss8 gene, identified in mouse frizzy (fr) and rat hairless (fr(CR)) animals, respectively, have been proposed to be responsible for their skin phenotypes. In the present study, we analyzed those mutations, revealing a change in the protein structure, a modification of the glycosylation state, and an overall reduction in the activation of ENaC of the two mutant proteins. In vivo analyses demonstrated that both fr and fr(CR) mutant animals present analogous reduction of embryonic viability, similar histologic aberrations at the level of the skin, and a significant decrease in the activity of ENaC in the distal colon compared with their control littermates. Hairless rats additionally had dehydration defects in skin and intestine and significant reduction in the body weight. In conclusion, we provided molecular and functional evidence that CAP1/Prss8 mutations are accountable for the defects in fr and fr(CR) animals, and we furthermore demonstrate a decreased function of the CAP1/Prss8 mutant proteins. Therefore, fr and fr(CR) animals are suitable models to investigate the consequences of CAP1/Prss8 action on its target proteins in the whole organism.
Resumo:
The viability of Ascaris lumbricoides eggs passed in the feces was evaluated after treatment of patients with one of the anti-helminthic drugs (thiabendazole, levamisole, cambendazole, pyrantel pamoate, mebendazole or praziquantel). For each drug, a group of 5 children was selected and their feces collected 24 h before treatment and 24, 48 and 72 h after drug administration, except for mebendazole, with the feces being collected throughout the period of treatment. After sedimentation, the total amount of eggs from each collection was transferred to tissue culture flasks containing 10 ml H2So4 O, 1N, with the addtion of 3 drops of a miconazol solution, and incubated at 28 graus centígrados, individually, for 80 days. The flasks wee maintained open and the culture were oxigenated daily by manual agitation. On the 80th day of culture, 20-days-old albino mice were inoculated with 3,200 embryonated eggs, per os. Larvae were recovered from their lungs and hearts, on the 8th day after infection, according to Baerman's method (Morais, 1948). Thiabendazole showed 100.0% ovicidal capacity as early as 48 after treatment. Inhibition of embrionary development was observed when thiabendazole was used. This drug also had an effect on the eggs infectivity when inoculated into normal mice. No significant effect on embrionary development was observed for the other drugs tested.
Resumo:
Mating with attractive or dominant males is often predicted to offer indirect genetic benefits to females, but it is still largely unclear how important such non-random mating can be with regard to embryo viability. We sampled a natural population of adult migratory brown trout (Salmo trutta), bred them in vitro in a half-sib breeding design to separate genetic from maternal environmental effects, raised 2098 embryos singly until hatching, and exposed them experimentally to different levels of pathogen stress at a late embryonic stage. We found that the embryos' tolerance to the induced pathogen stress was linked to the major histocompatibility complex (MHC) of their parents, i.e. certain MHC genotypes appeared to provide better protection against infection than others. We also found significant additive genetic variance for stress tolerance. Melanin-based dark skin patterns revealed males with 'good genes', i.e. embryos fathered by dark coloured males had a high tolerance to infection. Mating with large and dominant males would, however, not improve embryo viability when compared to random mating. We used simulations to provide estimates of how mate choice based on MHC or melanin-based skin patterns would influence embryos' tolerance to the experimentally induced pathogen stress.
Resumo:
Perinatal care of pregnant women at high risk for preterm delivery and of preterm infants born at the limit of viability (22-26 completed weeks of gestation) requires a multidisciplinary approach by an experienced perinatal team. Limited precision in the determination of both gestational age and foetal weight, as well as biological variability may significantly affect the course of action chosen in individual cases. The decisions that must be taken with the pregnant women and on behalf of the preterm infant in this context are complex and have far-reaching consequences. When counselling pregnant women and their partners, neonatologists and obstetricians should provide them with comprehensive information in a sensitive and supportive way to build a basis of trust. The decisions are developed in a continuing dialogue between all parties involved (physicians, midwives, nursing staff and parents) with the principal aim to find solutions that are in the infant's and pregnant woman's best interest. Knowledge of current gestational age-specific mortality and morbidity rates and how they are modified by prenatally known prognostic factors (estimated foetal weight, sex, exposure or nonexposure to antenatal corticosteroids, single or multiple births) as well as the application of accepted ethical principles form the basis for responsible decision-making. Communication between all parties involved plays a central role. The members of the interdisciplinary working group suggest that the care of preterm infants with a gestational age between 22 0/7 and 23 6/7 weeks should generally be limited to palliative care. Obstetric interventions for foetal indications such as Caesarean section delivery are usually not indicated. In selected cases, for example, after 23 weeks of pregnancy have been completed and several of the above mentioned prenatally known prognostic factors are favourable or well informed parents insist on the initiation of life-sustaining therapies, active obstetric interventions for foetal indications and provisional intensive care of the neonate may be reasonable. In preterm infants with a gestational age between 24 0/7 and 24 6/7 weeks, it can be difficult to determine whether the burden of obstetric interventions and neonatal intensive care is justified given the limited chances of success of such a therapy. In such cases, the individual constellation of prenatally known factors which impact on prognosis can be helpful in the decision making process with the parents. In preterm infants with a gestational age between 25 0/7 and 25 6/7 weeks, foetal surveillance, obstetric interventions for foetal indications and neonatal intensive care measures are generally indicated. However, if several prenatally known prognostic factors are unfavourable and the parents agree, primary non-intervention and neonatal palliative care can be considered. All pregnant women with threatening preterm delivery or premature rupture of membranes at the limit of viability must be transferred to a perinatal centre with a level III neonatal intensive care unit no later than 23 0/7 weeks of gestation, unless emergency delivery is indicated. An experienced neonatology team should be involved in all deliveries that take place after 23 0/7 weeks of gestation to help to decide together with the parents if the initiation of intensive care measures appears to be appropriate or if preference should be given to palliative care (i.e., primary non-intervention). In doubtful situations, it can be reasonable to initiate intensive care and to admit the preterm infant to a neonatal intensive care unit (i.e., provisional intensive care). The infant's clinical evolution and additional discussions with the parents will help to clarify whether the life-sustaining therapies should be continued or withdrawn. Life support is continued as long as there is reasonable hope for survival and the infant's burden of intensive care is acceptable. If, on the other hand, the health care team and the parents have to recognise that in the light of a very poor prognosis the burden of the currently used therapies has become disproportionate, intensive care measures are no longer justified and other aspects of care (e.g., relief of pain and suffering) are the new priorities (i.e., redirection of care). If a decision is made to withhold or withdraw life-sustaining therapies, the health care team should focus on comfort care for the dying infant and support for the parents.
Resumo:
Fluorescence flow cytometry was employed to assess the potential of a vital dye, hydroethiedine, for use in the detection and monitoring of the viability of hemoparasites in infected erythrocytes, using Babesia bovis as a model parasite. The studies demonstrated that hydroethidine is taken up by B. bovis and metabolically converted to the DNA binding fluorochrone, ethidium. Following uptake of the dye, erythrocytes contamine viable parasites were readily distinguished and quantitated. Timed studies with the parasiticidal drug, Ganaseg, showed that it is possible to use the fluorochrome assay to monitor the effects of the drug on the rate of replication and viability of B. bovis in culture. The assay provides a rapid method for evaluation of the in vitro effect of drugs on hemoparasites and for analysis of the effect of various components of the immune response, such as lymphokines, monocyte products, antibodies, and effector cells (T, NK, LAK, ADCC) on the growth and viability of intraerythrocytic parasites.