951 resultados para Vertical take-off


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aircraft in high-lift configuration shed multiple vortices. These generally merge to form a downstream wake consisting of two counter-rotating vortices of equal strength. The understanding of the merger of two co-rotating trailing vortices is important in evaluating the separation criteria for different aircraft to prevent wake vortex hazards during landing and take-off. There is no existing theoretical method on the basis of which such norms can be set. The present study is aimed at gaining a better understanding of the behaviour of wake vortices behind the aircraft. Two dimensional studies are carried out using the vortex blob method and compared with Bertenyi's experiment. It is shown that inviscid two dimensional effects are insufficient to explain the observations. Three dimensional studies, using the vortex filament method, are applied to the same test case. Two Lamb-Oseen profile vortices of the same dimensions and initial separation as the experiment are allowed to evolve from a straight starting condition until a converged steady flow is achieved. The results obtained show good agreement with the experimental distance to merger. Core radius and separation behaviour is qualitatively similar to experiment, with the exception of rapid increases at first. This may be partially attributable to the choice of filament-element length, and recommended further work includes a convergence study for this parameter. Copyright © 2005 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Against a background of increasing energy demand and rising fuel prices, hybrid-electric propulsion systems (HEPS) have the potential to significantly reduce fuel consumption in the aviation industry, particularly in the lighter sectors. By taking advantage of both Electric Motor (EM) and Internal Combustion Engine (ICE), HEPS provide not only a benefit in fuel saving but also a reduction in take-off noise and the emission levels. This research considers the design and sizing process of a hybrid-electric propulsion system for a single-seat demonstrator aircraft, the experimental derivation of the ICE map and the EM parameters. In addition to the experimental data, a novel modeling approach including several linked desktop PC software packages is presented to analyze and optimize hybrid-electric technology for aircraft. Further to the analysis of a parallel hybrid-electric, mid-scale aircraft, this paper also presents a scaling approach for a 20 kg UAV and a 50 tonne inter-city airliner. At the smaller scale, two different mission profiles are analyzed: an ISR mission profile, where the simulation routine optimizes the component size of the hybrid-electric propulsion system with respect to fuel saving, and a maximum duration profile; where the flight endurance is determined as a function of payload weight. At the larger scale, the performance of a 50 tonne inter-city airliner is modeled, based on a hybrid-electric gas-turbine, assuming a range of electric boost powers and battery masses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mismatch in thermal response between a High Pressure Compressor (HPC) drum and casing is a limiting factor in the reduction of compressor clearance. An experimental test rig has been used to demonstrate the concept of radial inflow to reduce the thermal time constant of HPC discs. The testing uses a simulated idle - Maximum Take Off (MTO) - idle transient in order to measure the thermal response directly. The testing is fully scaled in the dimensionless sense to engine conditions. A simple closure model based on lumped capacitance is used to illustrate the scope of potential benefits. The proof-of-concept testing shows that HPC disc time constant reductions of the order 2 are feasible with a radial-inflow bleed of only 4% of bore flow at scaled MTO conditions. Using the experimental results, the simple closure modelling suggests that for a stage with a significant mismatch in thermal response, reductions in 2D axis-symmetric clearance of as much as 50% at MTO conditions may be possible along with significant scope for improvements at cruise conditions. Copyright © 2013 by ASME.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We developed a direct partitioning method to construct a seamless discrete global grid system (DGGS) with any resolution based on a two-dimensional projected plane and the earth ellipsoid. This DGGS is composed of congruent square grids over the projected plane and irregular ellipsoidal quadrilaterals on the ellipsoidal surface. A new equal area projection named the parallels plane (PP) projection derived from the expansion of the central meridian and parallels has been employed to perform the transformation between the planar squares and the corresponding ellipsoidal grids. The horizontal sides of the grids are parts of the parallel circles and the vertical sides are complex ellipsoidal curves, which can be obtained by the inverse expression of the PP projection. The partition strategies, transformation equations, geometric characteristics and distortions for this DGGS have been discussed. Our analysis proves that the DGGS is area-preserving while length distortions only occur on the vertical sides off the central meridian. Angular and length distortions positively correlate to the increase in latitudes and the spanning of longitudes away from a chosen central meridian. This direct partition only generates a small number of broken grids that can be treated individually.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of the present study is twofold. Firstly, the paper investigates the undrained cyclic and post-cyclic behaviour of two silica sands by means of multi-stage cyclic triaxial tests. Secondly, based on the post-cyclic response observed in the element test, the authors formulate a simplified stress–strain relationship that can be conveniently used for the construction of p–y curves for liquefiable soils. The multi-stage loading condition consists of an initial cyclic loading applied to cause liquefaction, followed by undrained monotonic loading that aimed to investigate the post-cyclic response of the liquefied sample. It was found that due to the tendency of the liquefied soil to dilate upon undrained shearing, the post-liquefaction strain–stress response was characterised by a distinct strain–hardening behaviour. The latter is idealized by means of a bi-linear stress–strain model, which can be conveniently formulated in terms of three parameters, i.e.: (i) take-off shear strain, γto, i.e. shear strain required to mobilize 1 kPa of shear strength; (b) initial secant shear modulus, G1, defined as 1/γto; (c) post-liquefied shear modulus at large strain, G2 (γ⪢γto). Based on the experimental results, it is concluded that these parameters are strongly influenced by the initial relative density of the sample, whereby γto decreases with increasing relative density. Differently both shear moduli (G1 and G2) increases with increasing relative density. Lastly, the construction of new p–y curves for liquefiable soils based on the idealized bi-linear model is described.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hand signals are commonly used in applications such as giving instructions to a pilot for airplane take off or direction of a crane operator by a foreman on the ground. A new algorithm for recognizing hand signals from a single camera is proposed. Typically, tracked 2D feature positions of hand signals are matched to 2D training images. In contrast, our approach matches the 2D feature positions to an archive of 3D motion capture sequences. The method avoids explicit reconstruction of the 3D articulated motion from 2D image features. Instead, the matching between the 2D and 3D sequence is done by backprojecting the 3D motion capture data onto 2D. Experiments demonstrate the effectiveness of the approach in an example application: recognizing six classes of basketball referee hand signals in video.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thesis initially gives an overview of the wave industry and the current state of some of the leading technologies as well as the energy storage systems that are inherently part of the power take-off mechanism. The benefits of electrical energy storage systems for wave energy converters are then outlined as well as the key parameters required from them. The options for storage systems are investigated and the reasons for examining supercapacitors and lithium-ion batteries in more detail are shown. The thesis then focusses on a particular type of offshore wave energy converter in its analysis, the backward bent duct buoy employing a Wells turbine. Variable speed strategies from the research literature which make use of the energy stored in the turbine inertia are examined for this system, and based on this analysis an appropriate scheme is selected. A supercapacitor power smoothing approach is presented in conjunction with the variable speed strategy. As long component lifetime is a requirement for offshore wave energy converters, a computer-controlled test rig has been built to validate supercapacitor lifetimes to manufacturer’s specifications. The test rig is also utilised to determine the effect of temperature on supercapacitors, and determine application lifetime. Cycle testing is carried out on individual supercapacitors at room temperature, and also at rated temperature utilising a thermal chamber and equipment programmed through the general purpose interface bus by Matlab. Application testing is carried out using time-compressed scaled-power profiles from the model to allow a comparison of lifetime degradation. Further applications of supercapacitors in offshore wave energy converters are then explored. These include start-up of the non-self-starting Wells turbine, and low-voltage ride-through examined to the limits specified in the Irish grid code for wind turbines. These applications are investigated with a more complete model of the system that includes a detailed back-to-back converter coupling a permanent magnet synchronous generator to the grid. Supercapacitors have been utilised in combination with battery systems for many applications to aid with peak power requirements and have been shown to improve the performance of these energy storage systems. The design, implementation, and construction of coupling a 5 kW h lithium-ion battery to a microgrid are described. The high voltage battery employed a continuous power rating of 10 kW and was designed for the future EV market with a controller area network interface. This build gives a general insight to some of the engineering, planning, safety, and cost requirements of implementing a high power energy storage system near or on an offshore device for interface to a microgrid or grid.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There has been an increased use of the Doubly-Fed Induction Machine (DFIM) in ac drive applications in recent times, particularly in the field of renewable energy systems and other high power variable-speed drives. The DFIM is widely regarded as the optimal generation system for both onshore and offshore wind turbines and has also been considered in wave power applications. Wind power generation is the most mature renewable technology. However, wave energy has attracted a large interest recently as the potential for power extraction is very significant. Various wave energy converter (WEC) technologies currently exist with the oscillating water column (OWC) type converter being one of the most advanced. There are fundemental differences in the power profile of the pneumatic power supplied by the OWC WEC and that of a wind turbine and this causes significant challenges in the selection and rating of electrical generators for the OWC devises. The thesis initially aims to provide an accurate per-phase equivalent circuit model of the DFIM by investigating various characterisation testing procedures. Novel testing methodologies based on the series-coupling tests is employed and is found to provide a more accurate representation of the DFIM than the standard IEEE testing methods because the series-coupling tests provide a direct method of determining the equivalent-circuit resistances and inductances of the machine. A second novel method known as the extended short-circuit test is also presented and investigated as an alternative characterisation method. Experimental results on a 1.1 kW DFIM and a 30 kW DFIM utilising the various characterisation procedures are presented in the thesis. The various test methods are analysed and validated through comparison of model predictions and torque-versus-speed curves for each induction machine. Sensitivity analysis is also used as a means of quantifying the effect of experimental error on the results taken from each of the testing procedures and is used to determine the suitability of the test procedures for characterising each of the devices. The series-coupling differential test is demonstrated to be the optimum test. The research then focuses on the OWC WEC and the modelling of this device. A software model is implemented based on data obtained from a scaled prototype device situated at the Irish test site. Test data from the electrical system of the device is analysed and this data is used to develop a performance curve for the air turbine utilised in the WEC. This performance curve was applied in a software model to represent the turbine in the electro-mechanical system and the software results are validated by the measured electrical output data from the prototype test device. Finally, once both the DFIM and OWC WEC power take-off system have been modeled succesfully, an investigation of the application of the DFIM to the OWC WEC model is carried out to determine the electrical machine rating required for the pulsating power derived from OWC WEC device. Thermal analysis of a 30 kW induction machine is carried out using a first-order thermal model. The simulations quantify the limits of operation of the machine and enable thedevelopment of rating requirements for the electrical generation system of the OWC WEC. The thesis can be considered to have three sections. The first section of the thesis contains Chapters 2 and 3 and focuses on the accurate characterisation of the doubly-fed induction machine using various testing procedures. The second section, containing Chapter 4, concentrates on the modelling of the OWC WEC power-takeoff with particular focus on the Wells turbine. Validation of this model is carried out through comparision of simulations and experimental measurements. The third section of the thesis utilises the OWC WEC model from Chapter 4 with a 30 kW induction machine model to determine the optimum device rating for the specified machine. Simulations are carried out to perform thermal analysis of the machine to give a general insight into electrical machine rating for an OWC WEC device.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In 1998, Swissair Flight I I I (SR111) developed an in-flight fire shortly after take-off which resulted in the loss of the aircraft, a McDonnell Douglas MD-I 1, and all passengers and crew. The Transportation Safety Board (TSB) of Canada, Fire and Explosion Group launched a four year investigation into the incident in an attempt to understand the cause and subsequent mechanisms which lead to the rapid spread of the in-flight fire. As part of this investigation, the SMARTFIRE Computational Fluid Dynamics (CFD) software was used to predict the 'possible' development of the fire and associated smoke movement. In this paper the CFD fire simulations are presented and model predictions compared with key findings from the investigation. The model predictions are shown to be consistent with a number of the investigation findings associated with the early stages of the fire development. The analysis makes use of simulated pre-fire airflow conditions within the MD-11 cockpit and above ceiling region presented in an earlier publication (Part 1) which was published in The Aeronautical Journal in January 2006(4).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The existence of highly localized multisite oscillatory structures (discrete multibreathers) in a nonlinear Klein-Gordon chain which is characterized by an inverse dispersion law is proven and their linear stability is investigated. The results are applied in the description of vertical (transverse, off-plane) dust grain motion in dusty plasma crystals, by taking into account the lattice discreteness and the sheath electric and/or magnetic field nonlinearity. Explicit values from experimental plasma discharge experiments are considered. The possibility for the occurrence of multibreathers associated with vertical charged dust grain motion in strongly coupled dusty plasmas (dust crystals) is thus established. From a fundamental point of view, this study aims at providing a rigorous investigation of the existence of intrinsic localized modes in Debye crystals and/or dusty plasma crystals and, in fact, suggesting those lattices as model systems for the study of fundamental crystal properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oscillating wave surge converters (OWSCs) are a class of wave power technology that exploits the enhanced horizontal fluid particle movement of waves in the nearshore coastal zone with water depths of 10–20 m. OWSCs predominantly oscillate horizontally in surge as opposed to the majority of wave devices, which oscillate vertically in heave and usually are deployed in deeper water. The characteristics of the nearshore wave resource are described along with the hydrodynamics of OWSCs. The variables in the OWSC design space are discussed together with a presentation of some of their effects on capture width, frequency bandwidth response and power take-off characteristics. There are notable differences between the different OWSCs under development worldwide, and these are highlighted. The final section of the paper describes Aquamarine Power’s 315kW Oyster 1 prototype, which was deployed at the European Marine Energy Centre in August 2009. Its place in the OWSC design space is described along with the practical experience gained. This has led to the design of Oyster 2, which was deployed in August 2011. It is concluded that nearshore OWSCs are serious contenders in the mix of wave power technologies. The nearshore wave climate has a narrower directional spread than the offshore, the largest waves are filtered out and the exploitable resource is typically only 10–20% less in 10m depth compared with 50m depth. Regarding the devices, a key conclusion is that OWSCs such as Oyster primarily respond in the working frequency range to the horizontal fluid acceleration; Oyster is not a drag device responding to horizontal fluid velocity. The hydrodynamics of Oyster is dominated by inertia with added inertia being a very significant contributor. It is unlikely that individual flap modules will exceed 1MW in installed capacity owing to wave resource, hydrodynamic and economic constraints. Generating stations will be made up of line arrays of flaps with communal secondary power conversion every 5–10 units.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis investigates the hydrodynamics of a small, seabed mounted, bottom hinged, wave energy converter in shallow water. The Oscillating Wave Surge Converter is a pitching flap-type device which is located in 10-15m of water to take advantage of the amplification of horizontal water particle motion in shallow water. A conceptual model of the hydrodynamics of the device has been formulated and shows that, as the motion of the flap is highly constrained, the magnitude of the force applied to the flap by the wave is strongly linked to the power absorption.

An extensive set of experiments has been carried out in the wave tank at Queen’s University at both 40th and 20th scales. The experiments have included testing in realistic sea states to estimate device performance as well as fundamental tests using small amplitude monochromatic waves to determine the force applied to the flap by the waves. The results from the physical modelling programme have been used in conjunction with numerical data from WAMIT to validate the conceptual model.

The work finds that tuning the OWSC to the incident wave periods is problematic and only results in a marginal increase in power capture. It is also found that the addition of larger diameter rounds to the edges of the flap reduces viscous losses and has a greater effect on the performance of the device than tuning. As wave force is the primary driver of device performance it is shown that the flap should fill the water column and should pierce the water surface to reduce losses due to wave overtopping.

With the water depth fixed at approximately 10m it is shown that the width of the flap has the greatest impact on the magnitude of wave force, and thus device performance. An 18m wide flap is shown to have twice the absorption efficiency of a 6m wide flap and captures 6 times the power. However, the increase in power capture with device width is not limitless and a 24m wide flap is found to be affected by two-dimensional hydrodynamics which reduces its performance per unit width, especially in sea states with short periods. It is also shown that as the width increases the performance gains associated with the addition of the end effectors reduces. Furthermore, it is shown that as the flap width increases the natural pitching period of the flap increases, thus detuning the flap further from the wave periods of interest for wave energy conversion.

The effect of waves approaching the flap from an oblique angle is also investigated and the power capture is found to decrease with the cosine squared of the encounter angle. The characteristic of the damping applied by the power take off system is found to have a significant effect on the power capture of the device, with constant damping producing between 20% and 30% less power than quadratic damping. Furthermore, it is found that applying a higher level of damping, or a damping bias, to the flap as it pitches towards the beach increases the power capture by 10%.

A further set of experiments has been undertaken in a case study used to predict the power capture of a prototype of the OWSC concept. The device, called the Oyster Demonstrator, has been developed by Aquamarine Power Ltd. and is to be installed at the European Marine Energy Centre, Scotland, in 2009.

The work concludes that OWSC is a viable wave energy converter and absorption efficiencies of up 75% have been measured. It is found that to maximise power absorption the flap should be approximately 20m wide with large diameter rounded edges, having its pivot close to the seabed and its top edge piercing the water surface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel approach for the multi-objective design optimisation of aerofoil profiles is presented. The proposed method aims to exploit the relative strengths of global and local optimisation algorithms, whilst using surrogate models to limit the number of computationally expensive CFD simulations required. The local search stage utilises a re-parameterisation scheme that increases the flexibility of the geometry description by iteratively increasing the number of design variables, enabling superior designs to be generated with minimal user intervention. Capability of the algorithm is demonstrated via the conceptual design of aerofoil sections for use on a lightweight laminar flow business jet. The design case is formulated to account for take-off performance while reducing sensitivity to leading edge contamination. The algorithm successfully manipulates boundary layer transition location to provide a potential set of aerofoils that represent the trade-offs between drag at cruise and climb conditions in the presence of a challenging constraint set. Variations in the underlying flow physics between Pareto-optimal aerofoils are examined to aid understanding of the mechanisms that drive the trade-offs in objective functions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper demonstrates the unparalleled value of full scale data which has been acquired from ocean trials of Aquamarine Power’s Oyster 800 Wave Energy Converter (WEC) at the European Marine Energy Centre (EMEC), Orkney, Scotland.
High quality prototype and wave data were simultaneously recorded in over 750 distinct sea states (comprising different wave height, wave period and tidal height combinations) and include periods of operation where the hydraulic Power Take-Off (PTO) system was both pressurised (damped operation) and de-pressurised (undamped operation).
A detailed model-prototype correlation procedure is presented where the full scale prototype behaviour is compared to predictions from both experimental and numerical modelling techniques via a high temporal resolution wave-by-wave reconstruction. This unquestionably provides the definitive verification of the capabilities of such research techniques and facilitates a robust and meaningful uncertainty analysis to be performed on their outputs.
The importance of a good data capture methodology, both in terms of handling and accuracy is also presented. The techniques and procedures implemented by Aquamarine Power for real-time data management are discussed, including lessons learned on the instrumentation and infrastructure required to collect high-value data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reactionary delays constitute nearly half of all delay minutes in Europe. A capped, multi-component model is presented for estimating reactionary delay costs, as a non-linear function of primary delay duration. Maximum Take-Off Weights, historically established as a charging mechanism, may be used to model delay costs. Current industry reporting on delay is flight-centric. Passenger-centric metrics are needed to better understand delay propagation. In ATM, it is important to take account of contrasting flight- and passenger-centric effects, caused by cancellations, for example. Costs to airlines and passenger disutility will both continue to be driven by delay relative to the original schedule.