880 resultados para Vehicle Routing Problem Multi-Trip Ricerca Operativa TSP VRP
Resumo:
The focus of this thesis is to contribute to the development of new, exact solution approaches to different combinatorial optimization problems. In particular, we derive dedicated algorithms for a special class of Traveling Tournament Problems (TTPs), the Dial-A-Ride Problem (DARP), and the Vehicle Routing Problem with Time Windows and Temporal Synchronized Pickup and Delivery (VRPTWTSPD). Furthermore, we extend the concept of using dual-optimal inequalities for stabilized Column Generation (CG) and detail its application to improved CG algorithms for the cutting stock problem, the bin packing problem, the vertex coloring problem, and the bin packing problem with conflicts. In all approaches, we make use of some knowledge about the structure of the problem at hand to individualize and enhance existing algorithms. Specifically, we utilize knowledge about the input data (TTP), problem-specific constraints (DARP and VRPTWTSPD), and the dual solution space (stabilized CG). Extensive computational results proving the usefulness of the proposed methods are reported.
Resumo:
PURPOSE The decision-making process plays a key role in organizations. Every decision-making process produces a final choice that may or may not prompt action. Recurrently, decision makers find themselves in the dichotomous question of following a traditional sequence decision-making process where the output of a decision is used as the input of the next stage of the decision, or following a joint decision-making approach where several decisions are taken simultaneously. The implication of the decision-making process will impact different players of the organization. The choice of the decision- making approach becomes difficult to find, even with the current literature and practitioners’ knowledge. The pursuit of better ways for making decisions has been a common goal for academics and practitioners. Management scientists use different techniques and approaches to improve different types of decisions. The purpose of this decision is to use the available resources as well as possible (data and techniques) to achieve the objectives of the organization. The developing and applying of models and concepts may be helpful to solve managerial problems faced every day in different companies. As a result of this research different decision models are presented to contribute to the body of knowledge of management science. The first models are focused on the manufacturing industry and the second part of the models on the health care industry. Despite these models being case specific, they serve the purpose of exemplifying that different approaches to the problems and could provide interesting results. Unfortunately, there is no universal recipe that could be applied to all the problems. Furthermore, the same model could deliver good results with certain data and bad results for other data. A framework to analyse the data before selecting the model to be used is presented and tested in the models developed to exemplify the ideas. METHODOLOGY As the first step of the research a systematic literature review on the joint decision is presented, as are the different opinions and suggestions of different scholars. For the next stage of the thesis, the decision-making process of more than 50 companies was analysed in companies from different sectors in the production planning area at the Job Shop level. The data was obtained using surveys and face-to-face interviews. The following part of the research into the decision-making process was held in two application fields that are highly relevant for our society; manufacturing and health care. The first step was to study the interactions and develop a mathematical model for the replenishment of the car assembly where the problem of “Vehicle routing problem and Inventory” were combined. The next step was to add the scheduling or car production (car sequencing) decision and use some metaheuristics such as ant colony and genetic algorithms to measure if the behaviour is kept up with different case size problems. A similar approach is presented in a production of semiconductors and aviation parts, where a hoist has to change from one station to another to deal with the work, and a jobs schedule has to be done. However, for this problem simulation was used for experimentation. In parallel, the scheduling of operating rooms was studied. Surgeries were allocated to surgeons and the scheduling of operating rooms was analysed. The first part of the research was done in a Teaching hospital, and for the second part the interaction of uncertainty was added. Once the previous problem had been analysed a general framework to characterize the instance was built. In the final chapter a general conclusion is presented. FINDINGS AND PRACTICAL IMPLICATIONS The first part of the contributions is an update of the decision-making literature review. Also an analysis of the possible savings resulting from a change in the decision process is made. Then, the results of the survey, which present a lack of consistency between what the managers believe and the reality of the integration of their decisions. In the next stage of the thesis, a contribution to the body of knowledge of the operation research, with the joint solution of the replenishment, sequencing and inventory problem in the assembly line is made, together with a parallel work with the operating rooms scheduling where different solutions approaches are presented. In addition to the contribution of the solving methods, with the use of different techniques, the main contribution is the framework that is proposed to pre-evaluate the problem before thinking of the techniques to solve it. However, there is no straightforward answer as to whether it is better to have joint or sequential solutions. Following the proposed framework with the evaluation of factors such as the flexibility of the answer, the number of actors, and the tightness of the data, give us important hints as to the most suitable direction to take to tackle the problem. RESEARCH LIMITATIONS AND AVENUES FOR FUTURE RESEARCH In the first part of the work it was really complicated to calculate the possible savings of different projects, since in many papers these quantities are not reported or the impact is based on non-quantifiable benefits. The other issue is the confidentiality of many projects where the data cannot be presented. For the car assembly line problem more computational power would allow us to solve bigger instances. For the operation research problem there was a lack of historical data to perform a parallel analysis in the teaching hospital. In order to keep testing the decision framework it is necessary to keep applying more case studies in order to generalize the results and make them more evident and less ambiguous. The health care field offers great opportunities since despite the recent awareness of the need to improve the decision-making process there are many opportunities to improve. Another big difference with the automotive industry is that the last improvements are not spread among all the actors. Therefore, in the future this research will focus more on the collaboration between academia and the health care sector.
Resumo:
O presente relatório tem por objectivo apresentar e descrever de forma detalhada o projecto “Optimização de rotas na recolha de leite”. Este projecto foi conduzido no âmbito do estágio curricular, realizado na parte não-lectiva do Mestrado em Sistemas de Informação de Gestão, do Instituto Superior de Contabilidade e Administração de Coimbra, tendo decorrido na empresa Lacticoop entre 03 de Outubro de 2011 e 27 de Julho de 2012. O projecto surge da necessidade da empresa optimizar as suas rotas de recolha de leite. Essa optimização pode ser subdividida em duas partes distintas: i) a recolha de dados, características e processos relativos à empresa e aos sistemas com que labora; ii) e o desenvolvimento do software necessário para a optimização de uma componente desses sistemas, associada ao processo de recolha de leite. O primeiro ponto envolve a recolha de informação sobre a política interna da empresa, a recolha de dados acerca dos veículos, rotas, consumos e condutores, assim como o levantamento de procedimentos e tecnologias utilizadas. O segundo ponto envolve a modelação do problema em estudo, o levantamento das necessidades de software para implementar o sistema de informação, a avaliação de soluções de software e desenvolvimento/adaptação da aplicação informática, assim como a implementação do software desenvolvido / adaptado e testes. Actualmente a empresa não dispõe de qualquer automatismo para a definição de rotas, sendo o processo de escalonamento de rotas feito manualmente. Este processo é bastante moroso e complexo, envolvendo a troca de informações entre o gestor e os condutores das viaturas. É um processo gradual, numa sequência de detecção de erros e correcção desses mesmos erros. Esta metodologia conduz a soluções bastante ineficientes, desde logo pela desactualização das soluções relativamente à efemeridade dos dados, especialmente ao nível de quantidades de recolha do produto. A razão da escolha de um sistema informático que permita optimizar as rotas prende-se essencialmente com a rapidez na obtenção de soluções e na capacidade de integração de dados actualizados. Este processo recorre a técnicas e modelos de optimização que envolvem o problema de Rotas de Veículos (Vehicle Routing Problem), sendo, em geral, um problema de difícil resolução em função do número de clientes envolvidos. Todavia, trata-se de um sistema que traz enormes benefícios no apoio ao processo de decisão por parte do gestor. Neste estágio pretendeu-se, como objectivo principal, desenvolver uma aplicação que permita optimizar as rotas dos veículos envolvidos no processo de recolha de leite. Os benefícios do sistema na diminuição de distâncias percorridas pelas viaturas de recolha e no aumento da eficiência do sistema de transportes, serão evidenciados no trabalho desenvolvido. A aplicação foi criada no software Eclipse (utilizando a linguagem Java). Na primeira fase do projecto estava previsto monitorizar as rotas e consumos dos veículos através da tecnologia de geo-posicionamento por satélite (GPS), de forma a atribuir comissões sobre a poupança de combustível aos condutores dos veículos. Não foi possível concluir esta fase devido à inexistência dessa tecnologia nas viaturas e pelo facto de a empresa ter retirado essa prioridade a esse investimento.
Resumo:
The Multiple Pheromone Ant Clustering Algorithm (MPACA) models the collective behaviour of ants to find clusters in data and to assign objects to the most appropriate class. It is an ant colony optimisation approach that uses pheromones to mark paths linking objects that are similar and potentially members of the same cluster or class. Its novelty is in the way it uses separate pheromones for each descriptive attribute of the object rather than a single pheromone representing the whole object. Ants that encounter other ants frequently enough can combine the attribute values they are detecting, which enables the MPACA to learn influential variable interactions. This paper applies the model to real-world data from two domains. One is logistics, focusing on resource allocation rather than the more traditional vehicle-routing problem. The other is mental-health risk assessment. The task for the MPACA in each domain was to predict class membership where the classes for the logistics domain were the levels of demand on haulage company resources and the mental-health classes were levels of suicide risk. Results on these noisy real-world data were promising, demonstrating the ability of the MPACA to find patterns in the data with accuracy comparable to more traditional linear regression models. © 2013 Polish Information Processing Society.
Resumo:
Chaque année le feu brûle quelques dizaines de milliers d’hectares de forêts québécoises. Le coût annuel de prévention et de lutte contre les feux de forêts au Québec est de l’ordre de plusieurs dizaines de millions de dollars. Le présent travail contribue à la réduction de ces coûts à travers l’automatisation du processus de planification des opérations de suppression des feux de forêts majeurs. Pour ce faire, un modèle mathématique linéaire en nombres entiers a été élaboré, résolu et testé; introduisant un nouveau cas particulier à la littérature des Problèmes de Tournées de Véhicules (VRP). Ce modèle mathématique concerne le déploiement aérien des ressources disponibles pour l’extinction des incendies. Le modèle élaboré a été testé avec CPLEX sur des cas tirés de données réelles. Il a permis de réduire le temps de planification des opérations d’extinction des feux de forêts majeurs de 75% dans les situations courantes.
Resumo:
O elevado custo da operação de recolha de resíduos urbanos e a necessidade de cumprir metas dispostas em instrumentos legais são duas motivações que conduzem à necessidade de otimizar o serviço da recolha de resíduos. A otimização da recolha de resíduos é um problema de elevada complexidade de resolução que envolve a análise de redes de transporte. O presente trabalho propõe soluções de otimização da recolha de resíduos urbanos indiferenciados, a partir de um caso de estudo: o percurso RSU I 06 do município de Aveiro. Para este efeito, recorreu-se a uma aplicação informática de representação e análise geográfica: software ArcGIS denominada ArcMap e sua extensão Network Analyst, desenvolvida para calcular circuitos otimizados entre pontos de interesse. O trabalho realizado de aplicação do Network Analyst inclui a apresentação de duas das suas funcionalidades (Route e Vehicle Routing Problem). Em relação ao atual circuito de recolha e com base nos ensaios efetuados, foi possível concluir que esta aplicação permite obter circuitos de recolha otimizados mais curtos ou com menor duração. Contudo, ao nível da gestão permitiu concluir que, com a atual capacidade de contentorização, seria viável reduzir a frequência de recolha de seis vezes por semana para metade, dividindo a área de recolha em duas áreas, de acordo com as necessidades de cada local, reduzindo ainda mais o esforço de recolha. A aplicação do Network Analyst ao caso de estudo, permitiu concluir que é um software com muito interesse no processo de gestão da recolha de resíduos urbanos, apesar de apresentar algumas restrições de aplicação e que a qualidade/eficácia do procedimento de otimização depende da qualidade dos dados de entrada, em particular do descritivo geográfico disponível para os arruamentos e, em larga medida, também depende do modelo de gestão considerado.
O problema de alocação de berços: um estudo das heurísticas simulated annealing e algoritmo genético
Resumo:
Este trabalho apresenta um estudo de caso das heurísticas Simulated Annealing e Algoritmo Genético para um problema de grande relevância encontrado no sistema portuário, o Problema de Alocação em Berços. Esse problema aborda a programação e a alocação de navios às áreas de atracação ao longo de um cais. A modelagem utilizada nesta pesquisa é apresentada por Mauri (2008) [28] que trata do problema como uma Problema de Roteamento de Veículos com Múltiplas Garagens e sem Janelas de Tempo. Foi desenvolvido um ambiente apropriado para testes de simulação, onde o cenário de análise foi constituido a partir de situações reais encontradas na programação de navios de um terminal de contêineres. Os testes computacionais realizados mostram a performance das heurísticas em relação a função objetivo e o tempo computacional, a m de avaliar qual das técnicas apresenta melhores resultados.
Resumo:
The U.S. railroad companies spend billions of dollars every year on railroad track maintenance in order to ensure safety and operational efficiency of their railroad networks. Besides maintenance costs, other costs such as train accident costs, train and shipment delay costs and rolling stock maintenance costs are also closely related to track maintenance activities. Optimizing the track maintenance process on the extensive railroad networks is a very complex problem with major cost implications. Currently, the decision making process for track maintenance planning is largely manual and primarily relies on the knowledge and judgment of experts. There is considerable potential to improve the process by using operations research techniques to develop solutions to the optimization problems on track maintenance. In this dissertation study, we propose a range of mathematical models and solution algorithms for three network-level scheduling problems on track maintenance: track inspection scheduling problem (TISP), production team scheduling problem (PTSP) and job-to-project clustering problem (JTPCP). TISP involves a set of inspection teams which travel over the railroad network to identify track defects. It is a large-scale routing and scheduling problem where thousands of tasks are to be scheduled subject to many difficult side constraints such as periodicity constraints and discrete working time constraints. A vehicle routing problem formulation was proposed for TISP, and a customized heuristic algorithm was developed to solve the model. The algorithm iteratively applies a constructive heuristic and a local search algorithm in an incremental scheduling horizon framework. The proposed model and algorithm have been adopted by a Class I railroad in its decision making process. Real-world case studies show the proposed approach outperforms the manual approach in short-term scheduling and can be used to conduct long-term what-if analyses to yield managerial insights. PTSP schedules capital track maintenance projects, which are the largest track maintenance activities and account for the majority of railroad capital spending. A time-space network model was proposed to formulate PTSP. More than ten types of side constraints were considered in the model, including very complex constraints such as mutual exclusion constraints and consecution constraints. A multiple neighborhood search algorithm, including a decomposition and restriction search and a block-interchange search, was developed to solve the model. Various performance enhancement techniques, such as data reduction, augmented cost function and subproblem prioritization, were developed to improve the algorithm. The proposed approach has been adopted by a Class I railroad for two years. Our numerical results show the model solutions are able to satisfy all hard constraints and most soft constraints. Compared with the existing manual procedure, the proposed approach is able to bring significant cost savings and operational efficiency improvement. JTPCP is an intermediate problem between TISP and PTSP. It focuses on clustering thousands of capital track maintenance jobs (based on the defects identified in track inspection) into projects so that the projects can be scheduled in PTSP. A vehicle routing problem based model and a multiple-step heuristic algorithm were developed to solve this problem. Various side constraints such as mutual exclusion constraints and rounding constraints were considered. The proposed approach has been applied in practice and has shown good performance in both solution quality and efficiency.
Resumo:
Part 21: Mobility and Logistics
Resumo:
Dans ce mémoire, nous étudions un problème de tournées de véhicules dans lequel une flotte privée de véhicules n’a pas la capacité suffisante pour desservir les demandes des clients. Dans un tel cas, on fait appel à un transporteur externe. Ce dernier n’a aucune contrainte de capacité, mais un coût est encouru lorsqu’un client lui est affecté. Il n’est pas nécessaire de mettre tous les véhicules de la flotte privée en service si cette approche se révèle plus économique. L’objectif consiste à minimiser le coût fixe des véhicules, puis le coût variable de transport et le coût chargé par le transporteur externe. Notre travail consiste à appliquer la métaheuristique de recherche adaptative à grand voisinage sur ce problème. Nous comparons nos résultats avec ceux obtenus précédemment avec différentes techniques connues sur les instances de Christofides et celles de Golden.
Resumo:
Dans ce mémoire, nous étudions un problème de tournées de véhicules dans lequel une flotte privée de véhicules n’a pas la capacité suffisante pour desservir les demandes des clients. Dans un tel cas, on fait appel à un transporteur externe. Ce dernier n’a aucune contrainte de capacité, mais un coût est encouru lorsqu’un client lui est affecté. Il n’est pas nécessaire de mettre tous les véhicules de la flotte privée en service si cette approche se révèle plus économique. L’objectif consiste à minimiser le coût fixe des véhicules, puis le coût variable de transport et le coût chargé par le transporteur externe. Notre travail consiste à appliquer la métaheuristique de recherche adaptative à grand voisinage sur ce problème. Nous comparons nos résultats avec ceux obtenus précédemment avec différentes techniques connues sur les instances de Christofides et celles de Golden.
Resumo:
Mixed integer programming is up today one of the most widely used techniques for dealing with hard optimization problems. On the one side, many practical optimization problems arising from real-world applications (such as, e.g., scheduling, project planning, transportation, telecommunications, economics and finance, timetabling, etc) can be easily and effectively formulated as Mixed Integer linear Programs (MIPs). On the other hand, 50 and more years of intensive research has dramatically improved on the capability of the current generation of MIP solvers to tackle hard problems in practice. However, many questions are still open and not fully understood, and the mixed integer programming community is still more than active in trying to answer some of these questions. As a consequence, a huge number of papers are continuously developed and new intriguing questions arise every year. When dealing with MIPs, we have to distinguish between two different scenarios. The first one happens when we are asked to handle a general MIP and we cannot assume any special structure for the given problem. In this case, a Linear Programming (LP) relaxation and some integrality requirements are all we have for tackling the problem, and we are ``forced" to use some general purpose techniques. The second one happens when mixed integer programming is used to address a somehow structured problem. In this context, polyhedral analysis and other theoretical and practical considerations are typically exploited to devise some special purpose techniques. This thesis tries to give some insights in both the above mentioned situations. The first part of the work is focused on general purpose cutting planes, which are probably the key ingredient behind the success of the current generation of MIP solvers. Chapter 1 presents a quick overview of the main ingredients of a branch-and-cut algorithm, while Chapter 2 recalls some results from the literature in the context of disjunctive cuts and their connections with Gomory mixed integer cuts. Chapter 3 presents a theoretical and computational investigation of disjunctive cuts. In particular, we analyze the connections between different normalization conditions (i.e., conditions to truncate the cone associated with disjunctive cutting planes) and other crucial aspects as cut rank, cut density and cut strength. We give a theoretical characterization of weak rays of the disjunctive cone that lead to dominated cuts, and propose a practical method to possibly strengthen those cuts arising from such weak extremal solution. Further, we point out how redundant constraints can affect the quality of the generated disjunctive cuts, and discuss possible ways to cope with them. Finally, Chapter 4 presents some preliminary ideas in the context of multiple-row cuts. Very recently, a series of papers have brought the attention to the possibility of generating cuts using more than one row of the simplex tableau at a time. Several interesting theoretical results have been presented in this direction, often revisiting and recalling other important results discovered more than 40 years ago. However, is not clear at all how these results can be exploited in practice. As stated, the chapter is a still work-in-progress and simply presents a possible way for generating two-row cuts from the simplex tableau arising from lattice-free triangles and some preliminary computational results. The second part of the thesis is instead focused on the heuristic and exact exploitation of integer programming techniques for hard combinatorial optimization problems in the context of routing applications. Chapters 5 and 6 present an integer linear programming local search algorithm for Vehicle Routing Problems (VRPs). The overall procedure follows a general destroy-and-repair paradigm (i.e., the current solution is first randomly destroyed and then repaired in the attempt of finding a new improved solution) where a class of exponential neighborhoods are iteratively explored by heuristically solving an integer programming formulation through a general purpose MIP solver. Chapters 7 and 8 deal with exact branch-and-cut methods. Chapter 7 presents an extended formulation for the Traveling Salesman Problem with Time Windows (TSPTW), a generalization of the well known TSP where each node must be visited within a given time window. The polyhedral approaches proposed for this problem in the literature typically follow the one which has been proven to be extremely effective in the classical TSP context. Here we present an overall (quite) general idea which is based on a relaxed discretization of time windows. Such an idea leads to a stronger formulation and to stronger valid inequalities which are then separated within the classical branch-and-cut framework. Finally, Chapter 8 addresses the branch-and-cut in the context of Generalized Minimum Spanning Tree Problems (GMSTPs) (i.e., a class of NP-hard generalizations of the classical minimum spanning tree problem). In this chapter, we show how some basic ideas (and, in particular, the usage of general purpose cutting planes) can be useful to improve on branch-and-cut methods proposed in the literature.
Resumo:
The need for integration in the supply chain management leads us to considerthe coordination of two logistic planning functions: transportation andinventory. The coordination of these activities can be an extremely importantsource of competitive advantage in the supply chain management. The battle forcost reduction can pass through the equilibrium of transportation versusinventory managing costs. In this work, we study the specific case of aninventory-routing problem for a week planning period with different types ofdemand. A heuristic methodology, based on the Iterated Local Search, isproposed to solve the Multi-Period Inventory Routing Problem with stochasticand deterministic demand.
Resumo:
Logistics involves planning, managing, and organizing the flows of goods from the point of origin to the point of destination in order to meet some requirements. Logistics and transportation aspects are very important and represent a relevant costs for producing and shipping companies, but also for public administration and private citizens. The optimization of resources and the improvement in the organization of operations is crucial for all branches of logistics, from the operation management to the transportation. As we will have the chance to see in this work, optimization techniques, models, and algorithms represent important methods to solve the always new and more complex problems arising in different segments of logistics. Many operation management and transportation problems are related to the optimization class of problems called Vehicle Routing Problems (VRPs). In this work, we consider several real-world deterministic and stochastic problems that are included in the wide class of the VRPs, and we solve them by means of exact and heuristic methods. We treat three classes of real-world routing and logistics problems. We deal with one of the most important tactical problems that arises in the managing of the bike sharing systems, that is the Bike sharing Rebalancing Problem (BRP). We propose models and algorithms for real-world earthwork optimization problems. We describe the 3DP process and we highlight several optimization issues in 3DP. Among those, we define the problem related to the tool path definition in the 3DP process, the 3D Routing Problem (3DRP), which is a generalization of the arc routing problem. We present an ILP model and several heuristic algorithms to solve the 3DRP.
Resumo:
Combinatorial Optimization is a branch of optimization that deals with the problems where the set of feasible solutions is discrete. Routing problem is a well studied branch of Combinatorial Optimization that concerns the process of deciding the best way of visiting the nodes (customers) in a network. Routing problems appear in many real world applications including: Transportation, Telephone or Electronic data Networks. During the years, many solution procedures have been introduced for the solution of different Routing problems. Some of them are based on exact approaches to solve the problems to optimality and some others are based on heuristic or metaheuristic search to find optimal or near optimal solutions. There is also a less studied method, which combines both heuristic and exact approaches to face different problems including those in the Combinatorial Optimization area. The aim of this dissertation is to develop some solution procedures based on the combination of heuristic and Integer Linear Programming (ILP) techniques for some important problems in Routing Optimization. In this approach, given an initial feasible solution to be possibly improved, the method follows a destruct-and-repair paradigm, where the given solution is randomly destroyed (i.e., customers are removed in a random way) and repaired by solving an ILP model, in an attempt to find a new improved solution.