978 resultados para Vegetation Index


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The resolution of remotely sensed data is becoming increasingly fine, and there are now many sources of data with a pixel size of 1 m x 1 m. This produces huge amounts of data that have to be stored, processed and transmitted. For environmental applications this resolution possibly provides far more data than are needed: data overload. This poses the question: how much is too much? We have explored two resolutions of data-20 in pixel SPOT data and I in pixel Computerized Airborne Multispectral Imaging System (CAMIS) data from Fort A. P. Hill (Virginia, USA), using the variogram of geostatistics. For both we used the normalized difference vegetation index (NDVI). Three scales of spatial variation were identified in both the SPOT and 1 in data: there was some overlap at the intermediate spatial scales of about 150 in and of 500 m-600 in. We subsampled the I in data and scales of variation of about 30 in and of 300 in were identified consistently until the separation between pixel centroids was 15 in (or 1 in 225pixels). At this stage, spatial scales of about 100m and 600m were described, which suggested that only now was there a real difference in the amount of spatial information available from an environmental perspective. These latter were similar spatial scales to those identified from the SPOT image. We have also analysed I in CAMIS data from Fort Story (Virginia, USA) for comparison and the outcome is similar.:From these analyses it seems that a pixel size of 20m is adequate for many environmental applications, and that if more detail is required the higher resolution data could be sub-sampled to a 10m separation between pixel centroids without any serious loss of information. This reduces significantly the amount of data that needs to be stored, transmitted and analysed and has important implications for data compression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim: To describe the geographical pattern of mean body size of the non-volant mammals of the Nearctic and Neotropics and evaluate the influence of five environmental variables that are likely to affect body size gradients. Location: The Western Hemisphere. Methods: We calculated mean body size (average log mass) values in 110 × 110 km cells covering the continental Nearctic and Neotropics. We also generated cell averages for mean annual temperature, range in elevation, their interaction, actual evapotranspiration, and the global vegetation index and its coefficient of variation. Associations between mean body size and environmental variables were tested with simple correlations and ordinary least squares multiple regression, complemented with spatial autocorrelation analyses and split-line regression. We evaluated the relative support for each multiple-regression model using AIC. Results: Mean body size increases to the north in the Nearctic and is negatively correlated with temperature. In contrast, across the Neotropics mammals are largest in the tropical and subtropical lowlands and smaller in the Andes, generating a positive correlation with temperature. Finally, body size and temperature are nonlinearly related in both regions, and split-line linear regression found temperature thresholds marking clear shifts in these relationships (Nearctic 10.9 °C; Neotropics 12.6 °C). The increase in body sizes with decreasing temperature is strongest in the northern Nearctic, whereas a decrease in body size in mountains dominates the body size gradients in the warmer parts of both regions. Main conclusions: We confirm previous work finding strong broad-scale Bergmann trends in cold macroclimates but not in warmer areas. For the latter regions (i.e. the southern Nearctic and the Neotropics), our analyses also suggest that both local and broad-scale patterns of mammal body size variation are influenced in part by the strong mesoscale climatic gradients existing in mountainous areas. A likely explanation is that reduced habitat sizes in mountains limit the presence of larger-sized mammals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present an approach for dealing with coarse-resolution Earth observations (EO) in terrestrial ecosystem data assimilation schemes. The use of coarse-scale observations in ecological data assimilation schemes is complicated by spatial heterogeneity and nonlinear processes in natural ecosystems. If these complications are not appropriately dealt with, then the data assimilation will produce biased results. The “disaggregation” approach that we describe in this paper combines frequent coarse-resolution observations with temporally sparse fine-resolution measurements. We demonstrate the approach using a demonstration data set based on measurements of an Arctic ecosystem. In this example, normalized difference vegetation index observations are assimilated into a “zero-order” model of leaf area index and carbon uptake. The disaggregation approach conserves key ecosystem characteristics regardless of the observation resolution and estimates the carbon uptake to within 1% of the demonstration data set “truth.” Assimilating the same data in the normal manner, but without the disaggregation approach, results in carbon uptake being underestimated by 58% at an observation resolution of 250 m. The disaggregation method allows the combination of multiresolution EO and improves in spatial resolution if observations are located on a grid that shifts from one observation time to the next. Additionally, the approach is not tied to a particular data assimilation scheme, model, or EO product and can cope with complex observation distributions, as it makes no implicit assumptions of normality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The terrestrial biosphere is subjected to a wide range of natural climatic oscillations. Best known is the El Niño–southern oscillation (ENSO) that exerts globally extensive impacts on crops and natural vegetation. A 50-year time series of ENSO events has been analysed to determine those geographical areas that are reliably impacted by ENSO events. Most areas are impacted by changes in precipitation; however, the Pacific Northwest is warmed by El Niño events. Vegetation gross primary production (GPP) has been simulated for these areas, and tests well against independent satellite observations of the normalized difference vegetation index. Analyses of selected geographical areas indicate that changes in GPP often lead to significant changes in ecosystem structure and dynamics. The Pacific decadal oscillation (PDO) is another climatic oscillation that originates from the Pacific and exerts global impacts that are rather similar to ENSO events. However, the longer period of the PDO provided two phases in the time series with a cool phase from 1951 to 1976 and a warm phase from 1977 to 2002. It was notable that the cool phase of the PDO acted additively with cool ENSO phases to exacerbate drought in the earlier period for the southwest USA. By contrast in India, the cool phase of the PDO appears to reduce the negative impacts of warm ENSO events on crop production.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vegetation distribution and state have been measured since 1981 by the AVHRR (Advanced Very High Resolution Radiometer) instrument through satellite remote sensing. In this study a correction method is applied to the Pathfinder NDVI (Normalized Difference Vegetation Index) data to create a continuous European vegetation phenology dataset of a 10-day temporal and 0.1° spatial resolution; additionally, land surface parameters for use in biosphere–atmosphere modelling are derived. The analysis of time-series from this dataset reveals, for the years 1982–2001, strong seasonal and interannual variability in European land surface vegetation state. Phenological metrics indicate a late and short growing season for the years 1985–1987, in addition to early and prolonged activity in the years 1989, 1990, 1994 and 1995. These variations are in close agreement with findings from phenological measurements at the surface; spring phenology is also shown to correlate particularly well with anomalies in winter temperature and winter North Atlantic Oscillation (NAO) index. Nevertheless, phenological metrics, which display considerable regional differences, could only be determined for vegetation with a seasonal behaviour. Trends in the phenological phases reveal a general shift to earlier (−0.54 days year−1) and prolonged (0.96 days year−1) growing periods which are statistically significant, especially for central Europe.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study evaluates the use of European Centre for Medium-Range Weather Forecasts (ECMWF) products in monitoring and forecasting drought conditions during the recent 2010–2011 drought in the Horn of Africa (HoA). The region was affected by a precipitation deficit in both the October–December 2010 and March–May 2011 rainy seasons. These anomalies were captured by the ERA-Interim reanalysis (ERAI), despite its limitations in representing the March–May interannual variability. Soil moisture anomalies of ERAI also identified the onset of the drought condition early in October 2010 with a persistent drought still present in September 2011. This signal was also evident in normalized difference vegetation index (NDVI) remote sensing data. The precipitation deficit in October–December 2010 was associated with a strong La Niña event. The ECMWF seasonal forecasts for the October–December 2010 season predicted the La Niña event from June 2010 onwards. The forecasts also predicted a below-average October–December rainfall, from July 2010 onwards. The subsequent March–May rainfall anomaly was only captured by the new ECWMF seasonal forecast system in the forecasts starting in March 2011. Our analysis shows that a recent (since 1999) drying in the region during the March–May season is captured by the new ECMWF seasonal forecast system and is consistent with recently published results. The HoA region and its population are highly vulnerable to future droughts, thus global monitoring and forecasting of drought, such as that presented here, will become increasingly important in the future. Copyright © 2012 Royal Meteorological Society

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Upscaling ecological information to larger scales in space and downscaling remote sensing observations or model simulations to finer scales remain grand challenges in Earth system science. Downscaling often involves inferring subgrid information from coarse-scale data, and such ill-posed problems are classically addressed using regularization. Here, we apply two-dimensional Tikhonov Regularization (2DTR) to simulate subgrid surface patterns for ecological applications. Specifically, we test the ability of 2DTR to simulate the spatial statistics of high-resolution (4 m) remote sensing observations of the normalized difference vegetation index (NDVI) in a tundra landscape. We find that the 2DTR approach as applied here can capture the major mode of spatial variability of the high-resolution information, but not multiple modes of spatial variability, and that the Lagrange multiplier (γ) used to impose the condition of smoothness across space is related to the range of the experimental semivariogram. We used observed and 2DTR-simulated maps of NDVI to estimate landscape-level leaf area index (LAI) and gross primary productivity (GPP). NDVI maps simulated using a γ value that approximates the range of observed NDVI result in a landscape-level GPP estimate that differs by ca 2% from those created using observed NDVI. Following findings that GPP per unit LAI is lower near vegetation patch edges, we simulated vegetation patch edges using multiple approaches and found that simulated GPP declined by up to 12% as a result. 2DTR can generate random landscapes rapidly and can be applied to disaggregate ecological information and compare of spatial observations against simulated landscapes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tropical vegetation is a major source of global land surface evapotranspiration, and can thus play a major role in global hydrological cycles and global atmospheric circulation. Accurate prediction of tropical evapotranspiration is critical to our understanding of these processes under changing climate. We examined the controls on evapotranspiration in tropical vegetation at 21 pan-tropical eddy covariance sites, conducted a comprehensive and systematic evaluation of 13 evapotranspiration models at these sites, and assessed the ability to scale up model estimates of evapotranspiration for the test region of Amazonia. Net radiation was the strongest determinant of evapotranspiration (mean evaporative fraction was 0.72) and explained 87% of the variance in monthly evapotranspiration across the sites. Vapor pressure deficit was the strongest residual predictor (14%), followed by normalized difference vegetation index (9%), precipitation (6%) and wind speed (4%). The radiation-based evapotranspiration models performed best overall for three reasons: (1) the vegetation was largely decoupled from atmospheric turbulent transfer (calculated from X decoupling factor), especially at the wetter sites; (2) the resistance-based models were hindered by difficulty in consistently characterizing canopy (and stomatal) resistance in the highly diverse vegetation; (3) the temperature-based models inadequately captured the variability in tropical evapotranspiration. We evaluated the potential to predict regional evapotranspiration for one test region: Amazonia. We estimated an Amazonia-wide evapotranspiration of 1370 mm yr(-1), but this value is dependent on assumptions about energy balance closure for the tropical eddy covariance sites; a lower value (1096 mm yr(-1)) is considered in discussion on the use of flux data to validate and interpolate models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Digital elevation model (DEM) plays a substantial role in hydrological study, from understanding the catchment characteristics, setting up a hydrological model to mapping the flood risk in the region. Depending on the nature of study and its objectives, high resolution and reliable DEM is often desired to set up a sound hydrological model. However, such source of good DEM is not always available and it is generally high-priced. Obtained through radar based remote sensing, Shuttle Radar Topography Mission (SRTM) is a publicly available DEM with resolution of 92m outside US. It is a great source of DEM where no surveyed DEM is available. However, apart from the coarse resolution, SRTM suffers from inaccuracy especially on area with dense vegetation coverage due to the limitation of radar signals not penetrating through canopy. This will lead to the improper setup of the model as well as the erroneous mapping of flood risk. This paper attempts on improving SRTM dataset, using Normalised Difference Vegetation Index (NDVI), derived from Visible Red and Near Infra-Red band obtained from Landsat with resolution of 30m, and Artificial Neural Networks (ANN). The assessment of the improvement and the applicability of this method in hydrology would be highlighted and discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O ataque do nematóide de cisto da soja, Heterodera glycines, limita o potencial de expansão e maior produtividade de áreas plantadas com soja (Glycine Max). O conhecimento da distribuição espacial desse patógeno na lavoura é fundamental, para elaboração de estratégias de manejo. A área em estudo estava localizada em lavoura de soja, variedade BRS133, localizada no Município de Florínea, SP, com solos naturalmente infestados por H. glycines. Foram obtidas medidas de espectrorradiometria de campo, 112 dias após o plantio, nas regiões do visível e do infravermelho próximo do espectro eletromagnético, a fim de se conhecer o padrão da resposta espectral de plantas atacadas pelo fitonematóide. Paralelamente, foram retiradas amostras de solo e encaminhadas ao Laboratório de Nematologia, Departamento de Fitossanidade da Universidade Estadual Paulista Júlio de Mesquita Filho, Campus de Jaboticabal, onde foram processadas para determinação da densidade populacional do nematóide. As medidas do espectrorradiômetro foram transformadas em índice vegetativo, com diferença normalizada (NDVI), que foi relacionado com a densidade populacional do nematóide, peso da matéria fresca e número de vagens por planta. Observou-se que diferentes densidades de população estão diretamente relacionados com a resposta espectral das plantas expressa, através dos valores do NDVI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human interference in the semiarid region of Seridó Potiguar has promoted the increase of degraded areas. The economic dynamic that was established in the Seridó territory, especially after the fall of the trinomial cattle-cotton-mining in the 70s and 80s of the 20th century as pillars of the regional economy, resulted in an accelerated process of erosion of natural resources. The municipalities of the Seridó region have been spatially reordered by this new economic dynamic, marked by the growth of existing enterprises, and the development of new agricultural practices. One of the municipalities in the region that restructured its territorial space with the emergence of new agro-industrial activities was the town of Parelhas. With the demise of the trinomial cattle-cotton-mining in the 1980s, other productive activities were intensified from the 1990s, amongst them, pottery, responsible for the vegetal extraction for use as energy source. This recent economic and spatial restructuring in the region, reflected in the Parelhense municipal territory, required new productive ingredients responsible for the modification of past production relations that were based on cattle, cotton and mining. By that a process of exploring the environment was unleashed, especially the native vegetation, in an uncontrolled manner. In this context, the objective of this study was to survey and detect deforestation in the areas of Caatinga vegetation, used indiscriminately as energy supply for new agricultural practices, using remote sensing techniques based on the quantification of the Normalized Difference Vegetation Index / NDVI, Soil-Adjusted Vegetation Index / SAVI, surface temperature and rainfall data in the years 1990 and 2010. The results indicated that SAVI values above 0.2 in 1990 and 2010 represent the areas with the highest density of vegetation that occur exclusively along the major drainages in the town and areas of higher elevations. The areas between the ranges of values from 0.5 to 0.15 SAVI are areas with poor vegetation. On the other hand the highest values of temperature are distributed in the western and southeastern parts of the township, usually in places where the soil is exposed or there is sparse vegetation. The areas of bare soil decreased in extension in 2010 at 11, 6% when related to 1990, this was caused by a higher rainfall intensity in the first half of 2010, but no regeneration of vegetation occurred in some places in the western and southeastern areas of the municipality today, due to the extraction of firewood to fuel the furnaces of industries in town

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study includes the results of the analysis of areas susceptible to degradation by remote sensing in semi-arid region, which is a matter of concern and affects the whole population and the catalyst of this process occurs by the deforestation of the savanna and improper practices by the use of soil. The objective of this research is to use biophysical parameters of the MODIS / Terra and images TM/Landsat-5 to determine areas susceptible to degradation in semi-arid Paraiba. The study area is located in the central interior of Paraíba, in the sub-basin of the River Taperoá, with average annual rainfall below 400 mm and average annual temperature of 28 ° C. To draw up the map of vegetation were used TM/Landsat-5 images, specifically, the composition 5R4G3B colored, commonly used for mapping land use. This map was produced by unsupervised classification by maximum likelihood. The legend corresponds to the following targets: savanna vegetation sparse and dense, riparian vegetation and exposed soil. The biophysical parameters used in the MODIS were emissivity, albedo and vegetation index for NDVI (NDVI). The GIS computer programs used were Modis Reprojections Tools and System Information Processing Georeferenced (SPRING), which was set up and worked the bank of information from sensors MODIS and TM and ArcGIS software for making maps more customizable. Initially, we evaluated the behavior of the vegetation emissivity by adapting equation Bastiaanssen on NDVI for spatialize emissivity and observe changes during the year 2006. The albedo was used to view your percentage of increase in the periods December 2003 and 2004. The image sensor of Landsat TM were used for the month of December 2005, according to the availability of images and in periods of low emissivity. For these applications were made in language programs for GIS Algebraic Space (LEGAL), which is a routine programming SPRING, which allows you to perform various types of algebras of spatial data and maps. For the detection of areas susceptible to environmental degradation took into account the behavior of the emissivity of the savanna that showed seasonal coinciding with the rainy season, reaching a maximum emissivity in the months April to July and in the remaining months of a low emissivity . With the images of the albedo of December 2003 and 2004, it was verified the percentage increase, which allowed the generation of two distinct classes: areas with increased variation percentage of 1 to 11.6% and the percentage change in areas with less than 1 % albedo. It was then possible to generate the map of susceptibility to environmental degradation, with the intersection of the class of exposed soil with varying percentage of the albedo, resulting in classes susceptibility to environmental degradation

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many studies have assessed the process of forest degradation in the Brazilian Amazon using remote sensing approaches to estimate the extent and impact by selective logging and forest fires on tropical rain forest. However, only a few have estimated the combined impacts of those anthropogenic activities. We conducted a detailed analysis of selective logging and forest fire impacts on natural forests in the southern Brazilian Amazon state of Mato Grosso, one of the key logging centers in the country. To achieve this goal a 13-year series of annual Landsat images (1992-2004) was used to test different remote sensing techniques for measuring the extent of selective logging and forest fires, and to estimate their impact and interaction with other land use types occurring in the study region. Forest canopy regeneration following these disturbances was also assessed. Field measurements and visual observations were conducted to validate remote sensing techniques. Our results indicated that the Modified Soil Adjusted Vegetation Index aerosol free (MSAVI(af)) is a reliable estimator of fractional coverage under both clear sky and under smoky conditions in this study region. During the period of analysis, selective logging was responsible for disturbing the largest proportion (31%) of natural forest in the study area, immediately followed by deforestation (29%). Altogether, forest disturbances by selective logging and forest fires affected approximately 40% of the study site area. Once disturbed by selective logging activities, forests became more susceptible to fire in the study site. However, our results showed that fires may also occur in undisturbed forests. This indicates that there are further factors that may increase forest fire susceptibility in the study area. Those factors need to be better understood. Although selective logging affected the largest amount of natural forest in the study period, 35% and 28% of the observed losses of forest canopy cover were due to forest fire and selective logging combined and to forest fire only, respectively. Moreover, forest areas degraded by selective logging and forest fire is an addition to outright deforestation estimates and has yet to be accounted for by land use and land cover change assessments in tropical regions. Assuming that this observed trend of land use and land cover conversion continues, we predict that there will be no undisturbed forests remaining by 2011 in this study site. Finally, we estimated that 70% of the total forest area disturbed by logging and fire had sufficiently recovered to become undetectable using satellite data in 2004. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The precision agriculture technologies such as the spatial variability of soil attributes have been widely studied mostly with sugarcane. Among these technologies have been recently highlighted the use of the vegetation index derived from remote sensing products, such as powerful tools indicating the development of vegetation. This study aimed to analyze the spatial variability of clay content, pH and phosphorus in an Oxisol in an area with sugarcane production, and correlate with the Normalized Difference Vegetation Index (NDVI). The georeferenced grid was created for the soil properties (clay, phosphorus and pH) and generated the maps of spatial variability. For these same sites were calculated the NDVI, in addition to mapping of this ratio, the evaluation of the spatial correlation between this and other studied properties. The clay and phosphorus content showed positive spatial correlation with the NDVI, while no spatial correlation was observed between NDVI and pH. The satellite images from the sensor ETM + Landsat were used to correlate to NDVI to observe the spatial variability of the studied attributes.