986 resultados para Variations (Violin with orchestra)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arranged for violin and piano.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For violin and piano.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Impressionism serves as the transition between romantic and modern music. This dissertation examines the varying characteristics and colors of Impressionism in the works of late-romantic French composers, French Impressionistic composers, and composers with Impressionistic influence from countries other than France. Violin Sonata in g minor, L. 140 (1917) is the last work composed by Claude Debussy. The impressionistic characters in this work includes the ambiguous yet innovative and variant sonority and form. As a work also written in 1917, Ottorino Respighi's Violin Sonata in b minor is deeply rooted in Italian Romanticism. Some of the Impressionistic characters can be found in the second movement where the harmonies are in parallel motion. César Franck, a forerunner of impressionism, heavily influenced Debussy with the use of cyclic form. The Violin Sonata in A major (1886) is rich in harmonic language. Ernest Chausson's works mark the transition between Franck and Debussy. The Poème portrays a love story, Song of Love Triumphant by Turgenev. The work is a symphonic poem for violin and orchestra. The Mythes, Op. 30 (1915) by Karol Szymanowski is based on Greek mythology. Ravel's Sonata for Violin and Cello (1922), dedicated to Debussy, points to the future with a sophisticated harmonic language extending into atonality, spare texture, and expanded palate of impressionistic colors and techniques. Ernest Bloch's Violin Sonata No. 1 (1920) portrays the feeling of torment. Beneath the soaring cries of the violin, the harmonic sonority of Impressionism are present. Gabriel Fauré's Violin Sonata No. 1 in A major, op. 13 (1876) is the earliest work of this project. The scherzo movement became a prototype for future scherzo movements for Ravel and Debussy. Ravel's Tzigane (1924), at once a paragon of French impressionism, a delightful gypsy-style dance-fantasy, and a breathtaking virtuoso piece, is the perfect conclusion to my dissertation project. The pieces discussed above were presented in three recitals. Compact disc recordings of these recitals are available in the Michelle Smith Performing Arts Library of the Clarice Smith Performing Arts Center at the University of Maryland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphologic analysis of geographic strains of Musca domestica carried out on natural and laboratory experiments starting with 400 and 800 eggs showed phenotypic variations related with latitude. Females of the natural populations showed clines for several morphological traits of the wing, whereas male flies showed a reduction in the dispersion measures (s2 and CV) of wing width and length. The same reduction was obtained for males, females and total number of flies of the natural populations in dispersion of the number of bristles on the fourth abdominal sternite. A significant negative correlation was observed for the head width of females and for the total number of flies emerged in the laboratory experiments started with 400 eggs. All flies produced by the experiments starting with 800 eggs showed a reduction in variability of dispersion of the bristles on the fourth abdominal sternite in the strains obtained from locations south of the area analyzed. Evolutionary aspects of these correlation coefficients between morphometric traits and latitude are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cover title.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Originally for violin and string orchestra; acc. arr. for piano.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cover title.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Publisher's no.: Edition Peters No. 2967a.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Impedance cardiography is an application of bioimpedance analysis primarily used in a research setting to determine cardiac output. It is a non invasive technique that measures the change in the impedance of the thorax which is attributed to the ejection of a volume of blood from the heart. The cardiac output is calculated from the measured impedance using the parallel conductor theory and a constant value for the resistivity of blood. However, the resistivity of blood has been shown to be velocity dependent due to changes in the orientation of red blood cells induced by changing shear forces during flow. The overall goal of this thesis was to study the effect that flow deviations have on the electrical impedance of blood, both experimentally and theoretically, and to apply the results to a clinical setting. The resistivity of stationary blood is isotropic as the red blood cells are randomly orientated due to Brownian motion. In the case of blood flowing through rigid tubes, the resistivity is anisotropic due to the biconcave discoidal shape and orientation of the cells. The generation of shear forces across the width of the tube during flow causes the cells to align with the minimal cross sectional area facing the direction of flow. This is in order to minimise the shear stress experienced by the cells. This in turn results in a larger cross sectional area of plasma and a reduction in the resistivity of the blood as the flow increases. Understanding the contribution of this effect on the thoracic impedance change is a vital step in achieving clinical acceptance of impedance cardiography. Published literature investigates the resistivity variations for constant blood flow. In this case, the shear forces are constant and the impedance remains constant during flow at a magnitude which is less than that for stationary blood. The research presented in this thesis, however, investigates the variations in resistivity of blood during pulsataile flow through rigid tubes and the relationship between impedance, velocity and acceleration. Using rigid tubes isolates the impedance change to variations associated with changes in cell orientation only. The implications of red blood cell orientation changes for clinical impedance cardiography were also explored. This was achieved through measurement and analysis of the experimental impedance of pulsatile blood flowing through rigid tubes in a mock circulatory system. A novel theoretical model including cell orientation dynamics was developed for the impedance of pulsatile blood through rigid tubes. The impedance of flowing blood was theoretically calculated using analytical methods for flow through straight tubes and the numerical Lattice Boltzmann method for flow through complex geometries such as aortic valve stenosis. The result of the analytical theoretical model was compared to the experimental impedance measurements through rigid tubes. The impedance calculated for flow through a stenosis using the Lattice Boltzmann method provides results for comparison with impedance cardiography measurements collected as part of a pilot clinical trial to assess the suitability of using bioimpedance techniques to assess the presence of aortic stenosis. The experimental and theoretical impedance of blood was shown to inversely follow the blood velocity during pulsatile flow with a correlation of -0.72 and -0.74 respectively. The results for both the experimental and theoretical investigations demonstrate that the acceleration of the blood is an important factor in determining the impedance, in addition to the velocity. During acceleration, the relationship between impedance and velocity is linear (r2 = 0.98, experimental and r2 = 0.94, theoretical). The relationship between the impedance and velocity during the deceleration phase is characterised by a time decay constant, ô , ranging from 10 to 50 s. The high level of agreement between the experimental and theoretically modelled impedance demonstrates the accuracy of the model developed here. An increase in the haematocrit of the blood resulted in an increase in the magnitude of the impedance change due to changes in the orientation of red blood cells. The time decay constant was shown to decrease linearly with the haematocrit for both experimental and theoretical results, although the slope of this decrease was larger in the experimental case. The radius of the tube influences the experimental and theoretical impedance given the same velocity of flow. However, when the velocity was divided by the radius of the tube (labelled the reduced average velocity) the impedance response was the same for two experimental tubes with equivalent reduced average velocity but with different radii. The temperature of the blood was also shown to affect the impedance with the impedance decreasing as the temperature increased. These results are the first published for the impedance of pulsatile blood. The experimental impedance change measured orthogonal to the direction of flow is in the opposite direction to that measured in the direction of flow. These results indicate that the impedance of blood flowing through rigid cylindrical tubes is axisymmetric along the radius. This has not previously been verified experimentally. Time frequency analysis of the experimental results demonstrated that the measured impedance contains the same frequency components occuring at the same time point in the cycle as the velocity signal contains. This suggests that the impedance contains many of the fluctuations of the velocity signal. Application of a theoretical steady flow model to pulsatile flow presented here has verified that the steady flow model is not adequate in calculating the impedance of pulsatile blood flow. The success of the new theoretical model over the steady flow model demonstrates that the velocity profile is important in determining the impedance of pulsatile blood. The clinical application of the impedance of blood flow through a stenosis was theoretically modelled using the Lattice Boltzman method (LBM) for fluid flow through complex geometeries. The impedance of blood exiting a narrow orifice was calculated for varying degrees of stenosis. Clincial impedance cardiography measurements were also recorded for both aortic valvular stenosis patients (n = 4) and control subjects (n = 4) with structurally normal hearts. This pilot trial was used to corroborate the results of the LBM. Results from both investigations showed that the decay time constant for impedance has potential in the assessment of aortic valve stenosis. In the theoretically modelled case (LBM results), the decay time constant increased with an increase in the degree of stenosis. The clinical results also showed a statistically significant difference in time decay constant between control and test subjects (P = 0.03). The time decay constant calculated for test subjects (ô = 180 - 250 s) is consistently larger than that determined for control subjects (ô = 50 - 130 s). This difference is thought to be due to difference in the orientation response of the cells as blood flows through the stenosis. Such a non-invasive technique using the time decay constant for screening of aortic stenosis provides additional information to that currently given by impedance cardiography techniques and improves the value of the device to practitioners. However, the results still need to be verified in a larger study. While impedance cardiography has not been widely adopted clinically, it is research such as this that will enable future acceptance of the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A female voice softly recites physical and psychological associations of aura colours. On screen, individual words fade in and out rhythmically amid a field of swirling and morphing colours. The animated words correlate with the words being spoken, but not every word is displayed, therefore enabling an alternative range of verbal associations to emerge. “Auric Variations” plays with the mix of affirmation and anxiety that can underscore contemporary subjective experiences and the new age techniques we sometimes used to understand them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the monthly average SST and 850 hPa monthly average wind data, the seasonal, interannual and long-term variations in the eastern Indian Ocean warm pool (EIWP) and its relationship to the Indian Ocean Dipole (IOD), and its response to the wind over the Indian Ocean are analyzed in this study. The results show that the distribution range, boundary and area of the EIWP exhibited obviously seasonal and interannual variations associated with the ENSO cycles. Further analysis suggests that the EIWP had obvious long-term trend in its bound edge and area, which indicated the EIWP migrated westwards by about 14 longitudes for its west edge, southwards by about 5 latitudes for its south edge and increased by 3.52x10(6) km(2) for its area, respectively, from 1950 to 2002. The correlation and composite analyses show that the anomalous westward and northward displacements of the EIWP caused by the easterly wind anomaly and the southerly wind anomaly over the eastern equatorial Indian Ocean played an important and direct role in the formation of the IOD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this project is to present selected violin pieces by Paul Hindemith (1895-1963) against a backdrop of the diverse styles and traditions that he integrated in his music. For this dissertation project, selected violin sonatas by Hindemith were performed in three recitals alongside pieces by other German and Austro-German composers. These recitals were also recorded for archival purposes. The first recital, performed with pianist David Ballena on December 10, 2005, in Gildenhorn Recital Hall at the University of Maryland, College Park, included Violin Sonata Op.11, No. 1 (1918) by Paul Hindemith, Sonatina in D Major, Op. 137 (1816) by Franz Schubert, and Sonata in E-flat Major, Op.18 (1887) by Richard Strauss. The second recital, performed with pianist David Ballena on May 9, 2006, in Gildenhorn Recital Hall at the University of Maryland, included Sonata in E Minor, KV 304 (1778) by Wolfgang Amadeus Mozart, Sonata in E (1935) by Paul Hindemith, Romance for Violin and Orchestra No.1 in G Major (1800-1802) by Ludwig Van Beethoven, and Sonata for Violin and Piano in A minor, Op. 105 (1851) by Robert Schumann. The third recital, performed with David Ballena and Kai-Ching Chang on November 10, 2006 in Ulrich Recital Hall at the University of Maryland, included Violin Sonata Op.12 No.1 in D Major (1798) by Ludwig Van Beethoven, Sonata for Violin and Harpsichord No.4 in C Minor BWV 1017 (1720) by J.S. Bach, and Violin Sonata Op.11 No.2 (1918) by Paul Hindemith. For each of my dissertation recitals, I picked a piece by Hindemith as the core of the program then picked pieces by other composers that have similar key, similar texture, same number of movements or similar feeling to complete my program. Although his pieces used some classical methods of composition, he added his own distinct style: extension of chromaticism; his prominent use of interval of the fourth; his chromatic alteration of diatonic scale degrees; and his non-traditional cadences. Hindemith left behind a legacy of multi-dimensional, and innovative music capable of expressing both the old and the new aesthetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stars 51 Pegasi and tau Bootis show radial velocity variations that have been interpreted as resulting from companions with roughly Jovian mass and orbital periods of a few days. Gray and Gray & Hatzes reported that the radial velocity signal of 51 Peg is synchronous with variations in the shape of the line lambda 6253 Fe I; thus, they argue that the velocity signal arises not from a companion of planetary mass but from dynamic processes in the atmosphere of the star, possibly nonradial pulsations. Here we seek confirming evidence for line shape or strength variations in both 51 Peg and tau Boo, using R = 50,000 observations taken with the Advanced Fiber Optic Echelle. Because of our relatively low spectral resolution, we compare our observations with Gray's line bisector data by fitting observed line profiles to an expansion in terms of orthogonal (Hermite) functions. To obtain an accurate comparison, we model the emergent line profiles from rotating and pulsating stars, taking the instrumental point-spread function into account. We describe this modeling process in detail. We find no evidence for line profile or strength variations at the radial velocity period in either 51 Peg or in tau Boo. For 51 Peg, our upper limit for line shape variations with 4.23 day periodicity is small enough to exclude with 10 sigma confidence the bisector curvature signal reported by Gray & Hatzes; the bisector span and relative line depth signals reported by Gray are also not seen, but in this case with marginal (2 sigma ) confidence. We cannot, however, exclude pulsations as the source of 51 Peg's radial velocity variation because our models imply that line shape variations associated with pulsations should be much smaller than those computed by Gray & Hatzes; these smaller signals are below the detection limits both for Gray & Hatzes's data and for our own. tau Boo's large radial velocity amplitude and v sin i make it easier to test for pulsations in this star. Again we find no evidence for periodic line shape changes, at a level that rules out pulsations as the source of the radial velocity variability. We conclude that the planet hypothesis remains the most likely explanation for the existing data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hot-JupiterWASP-10bwas reported by Maciejewski et al. to showtransit timing variations (TTVs) with an amplitude of ~3.5 min. These authors proposed that the observed TTVs were caused by a 0.1MJup perturbing companion with an orbital period of ~5.23 d, and hence, close to the outer 5:3 mean-motion resonance with WASP-10b. To test this scenario, we present eight new transit light curves of WASP-10b obtained with the Faulkes Telescope North and the Liverpool Telescope. The new light curves, together with 22 previously published ones, were modelled with a Markov Chain Monte Carlo transit fitting code. Transit depth differences reported forWASP-10b are thought to be due to starspot-induced brightness modulation of the host star. Assuming the star is brighter at the activity minimum, we favour a small planetary radius. We find Rp = 1.039+0.043 -0.049RJup in agreement with Johnson et al. and Maciejewski et al. Recent studies find no evidence for a significant eccentricity in this system. We present consistent system parameters for a circular orbit and refine the orbital ephemeris ofWASP-10b. Our homogeneously derived transit times do not support the previous claimed TTV signal, which was strongly dependent on two previously published transits that have been incorrectly normalized. Nevertheless, a linear ephemeris is not a statistically good fit to the transit times of WASP-10b. We show that the observed transit time variations are due to spot occultation features or systematics. We discuss and exemplify the effects of occultation spot features in the measured transit times and show that despite spot occultation during egress and ingress being difficult to distinguish in the transit light curves, they have a significant effect in the measured transit times. We conclude that if we account for spot features, the transit times of WASP-10b are consistent with a linear ephemeris with the exception of one transit (epoch 143) which is a partial transit. Therefore, there is currently no evidence for the existence of a companion to WASP-10b. Our results support the lack of TTVs of hot-Jupiters reported for the Kepler sample.