998 resultados para Variational method


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, the quantum confinement effect is proposed as the cause of the displacement of the vibrational spectrum of molecular groups that involve hydrogen bonds. In this approach, the hydrogen bond imposes a space barrier to hydrogen and constrains its oscillatory motion. We studied the vibrational transitions through the Morse potential, for the NH and OH molecular groups inside macromolecules in situation of confinement (when hydrogen bonding is formed) and nonconfinement (when there is no hydrogen bonding). The energies were obtained through the variational method with the trial wave functions obtained from supersymmetric quantum mechanics formalism. The results indicate that it is possible to distinguish the emission peaks related to the existence of the hydrogen bonds. These analytical results were satisfactorily compared with experimental results obtained from infrared spectroscopy. (c) 2015 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hydrogen bond is a fundamental ingredient to stabilize the DNA and RNA macromolecules. The main contribution of this work is to describe quantitatively this interaction as a consequence of the quantum confinement of the hydrogen. The results for the free and confined system are compared with experimental data. The formalism to compute the energy gap of the vibration motion used to identify the spectrum lines is the Variational Method allied to Supersymmetric Quantum Mechanics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EN] The seminal work of Horn and Schunck [8] is the first variational method for optical flow estimation. It introduced a novel framework where the optical flow is computed as the solution of a minimization problem. From the assumption that pixel intensities do not change over time, the optical flow constraint equation is derived. This equation relates the optical flow with the derivatives of the image. There are infinitely many vector fields that satisfy the optical flow constraint, thus the problem is ill-posed. To overcome this problem, Horn and Schunck introduced an additional regularity condition that restricts the possible solutions. Their method minimizes both the optical flow constraint and the magnitude of the variations of the flow field, producing smooth vector fields. One of the limitations of this method is that, typically, it can only estimate small motions. In the presence of large displacements, this method fails when the gradient of the image is not smooth enough. In this work, we describe an implementation of the original Horn and Schunck method and also introduce a multi-scale strategy in order to deal with larger displacements. For this multi-scale strategy, we create a pyramidal structure of downsampled images and change the optical flow constraint equation with a nonlinear formulation. In order to tackle this nonlinear formula, we linearize it and solve the method iteratively in each scale. In this sense, there are two common approaches: one that computes the motion increment in the iterations, like in ; or the one we follow, that computes the full flow during the iterations, like in. The solutions are incrementally refined ower the scales. This pyramidal structure is a standard tool in many optical flow methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EN] In this work, we describe an implementation of the variational method proposed by Brox et al. in 2004, which yields accurate optical flows with low running times. It has several benefits with respect to the method of Horn and Schunck: it is more robust to the presence of outliers, produces piecewise-smooth flow fields and can cope with constant brightness changes. This method relies on the brightness and gradient constancy assumptions, using the information of the image intensities and the image gradients to find correspondences. It also generalizes the use of continuous L1 functionals, which help mitigate the efect of outliers and create a Total Variation (TV) regularization. Additionally, it introduces a simple temporal regularization scheme that enforces a continuous temporal coherence of the flow fields.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the context of aerial imagery, one of the first steps toward a coherent processing of the information contained in multiple images is geo-registration, which consists in assigning geographic 3D coordinates to the pixels of the image. This enables accurate alignment and geo-positioning of multiple images, detection of moving objects and fusion of data acquired from multiple sensors. To solve this problem there are different approaches that require, in addition to a precise characterization of the camera sensor, high resolution referenced images or terrain elevation models, which are usually not publicly available or out of date. Building upon the idea of developing technology that does not need a reference terrain elevation model, we propose a geo-registration technique that applies variational methods to obtain a dense and coherent surface elevation model that is used to replace the reference model. The surface elevation model is built by interpolation of scattered 3D points, which are obtained in a two-step process following a classical stereo pipeline: first, coherent disparity maps between image pairs of a video sequence are estimated and then image point correspondences are back-projected. The proposed variational method enforces continuity of the disparity map not only along epipolar lines (as done by previous geo-registration techniques) but also across them, in the full 2D image domain. In the experiments, aerial images from synthetic video sequences have been used to validate the proposed technique.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A family of measurements of generalisation is proposed for estimators of continuous distributions. In particular, they apply to neural network learning rules associated with continuous neural networks. The optimal estimators (learning rules) in this sense are Bayesian decision methods with information divergence as loss function. The Bayesian framework guarantees internal coherence of such measurements, while the information geometric loss function guarantees invariance. The theoretical solution for the optimal estimator is derived by a variational method. It is applied to the family of Gaussian distributions and the implications are discussed. This is one in a series of technical reports on this topic; it generalises the results of ¸iteZhu95:prob.discrete to continuous distributions and serve as a concrete example of a larger picture ¸iteZhu95:generalisation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Collision-induced power jitter is theoretically and numerically examined in dispersion-managed wavelength-division-multiplexed optical soliton transmission systems. The variational method is mainly used to develop a time efficient jitter calculation approach. The power jitter causes a serious problem for a singly periodic dispersion managed line having almost zero average dispersion, which can be reduced by applying doubly periodic dispersion management.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Summary form only given. Both dispersion management and the use of a nonlinear optical loop mirror (NOLM) as a saturable absorber can improve the performance of a soliton-based communication system. Dispersion management gives the benefits of low average dispersion while allowing pulses with higher powers to propagate, which helps to suppress Gordon-Haus timing jitter without sacrificing the signal-to-noise ratio. The NOLM suppresses the buildup of amplifier spontaneous emission noise and background dispersive radiation which, if allowed to interact with the soliton, can lead to its breakup. We examine optical pulse propagation in dispersion-managed (DM) transmission system with periodically inserted in-line NOLMs. To describe basic features of the signal transmission in such lines, we develop a simple theory based on a variational approach involving Gaussian trial functions. It, has already been proved that the variational method is an extremely effective tool for description of DM solitons. In the work we manage to include in the variational description the point action of the NOLM on pulse parameters, assuming that the Gaussian pulse shape is inherently preserved by propagation through the NOLM. The obtained results are verified by direct numerical simulations

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose – To propose and investigate a stable numerical procedure for the reconstruction of the velocity of a viscous incompressible fluid flow in linear hydrodynamics from knowledge of the velocity and fluid stress force given on a part of the boundary of a bounded domain. Design/methodology/approach – Earlier works have involved the similar problem but for stationary case (time-independent fluid flow). Extending these ideas a procedure is proposed and investigated also for the time-dependent case. Findings – The paper finds a novel variation method for the Cauchy problem. It proves convergence and also proposes a new boundary element method. Research limitations/implications – The fluid flow domain is limited to annular domains; this restriction can be removed undertaking analyses in appropriate weighted spaces to incorporate singularities that can occur on general bounded domains. Future work involves numerical investigations and also to consider Oseen type flow. A challenging problem is to consider non-linear Navier-Stokes equation. Practical implications – Fluid flow problems where data are known only on a part of the boundary occur in a range of engineering situations such as colloidal suspension and swimming of microorganisms. For example, the solution domain can be the region between to spheres where only the outer sphere is accessible for measurements. Originality/value – A novel variational method for the Cauchy problem is proposed which preserves the unsteady Stokes operator, convergence is proved and using recent for the fundamental solution for unsteady Stokes system, a new boundary element method for this system is also proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Summary form only given. Both dispersion management and the use of a nonlinear optical loop mirror (NOLM) as a saturable absorber can improve the performance of a soliton-based communication system. Dispersion management gives the benefits of low average dispersion while allowing pulses with higher powers to propagate, which helps to suppress Gordon-Haus timing jitter without sacrificing the signal-to-noise ratio. The NOLM suppresses the buildup of amplifier spontaneous emission noise and background dispersive radiation which, if allowed to interact with the soliton, can lead to its breakup. We examine optical pulse propagation in dispersion-managed (DM) transmission system with periodically inserted in-line NOLMs. To describe basic features of the signal transmission in such lines, we develop a simple theory based on a variational approach involving Gaussian trial functions. It, has already been proved that the variational method is an extremely effective tool for description of DM solitons. In the work we manage to include in the variational description the point action of the NOLM on pulse parameters, assuming that the Gaussian pulse shape is inherently preserved by propagation through the NOLM. The obtained results are verified by direct numerical simulations

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For decades scientists have attempted to use ideas of classical mechanics to choose basis functions for calculating spectra. The hope is that a classically-motivated basis set will be small because it covers only the dynamically important part of phase space. One popular idea is to use phase space localized (PSL) basis functions. This thesis improves on previous efforts to use PSL functions and examines the usefulness of these improvements. Because the overlap matrix, in the matrix eigenvalue problem obtained by using PSL functions with the variational method, is not an identity, it is costly to use iterative methods to solve the matrix eigenvalue problem. We show that it is possible to circumvent the orthogonality (overlap) problem and use iterative eigensolvers. We also present an altered method of calculating the matrix elements that improves the performance of the PSL basis functions, and also a new method which more efficiently chooses which PSL functions to include. These improvements are applied to a variety of single well molecules. We conclude that for single minimum molecules, the PSL functions are inferior to other basis functions. However, the ideas developed here can be applied to other types of basis functions, and PSL functions may be useful for multi-well systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neste artigo é apresentado um método numérico que pode ser utilizado por alunos de graduação para a solução de problemas em física quântica de poucos corpos. O método é aplicado a dois problemas de dois corpos geralmente vistos pelos estudantes: o átomo de hidrogênio e o dêuteron. O método porém, pode ser estendido para três ou mais partículas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The local fractional Poisson equations in two independent variables that appear in mathematical physics involving the local fractional derivatives are investigated in this paper. The approximate solutions with the nondifferentiable functions are obtained by using the local fractional variational iteration method.