911 resultados para Variable stars.
Resumo:
The exact composition of a specific class of compact stars, historically referred to as ""neutron stars,'' is still quite unknown. Possibilities ranging from hadronic to quark degrees of freedom, including self-bound versions of the latter, have been proposed. We specifically address the suitability of strange star models (including pairing interactions) in this work, in the light of new measurements available for four compact stars. The analysis shows that these data might be explained by such an exotic equation of state, actually selecting a small window in parameter space, but still new precise measurements and also further theoretical developments are needed to settle the subject.
Resumo:
Context. Determination of the ages of central stars of planetary nebulae (CSPN) is a complex problem, and there is presently no single method that can be generally applied. We have developed several methods of estimating the ages of CSPN, based on both the observed nebular properties and some properties of the stars themselves. Aims. Our aim is to estimate the ages and the age distribution of CSPN and to compare the derived results with mass and age determinations of CSPN and white dwarfs based on empirical determinations of these quantities. Methods. We considered a sample of planetary nebulae in the galactic disk, most of which (similar to 69%) are located in the solar neighbourhood, within 3 kpc from the Sun. We discuss several methods of deriving the age distribution of CSPN, namely; (i) the use of an age-metallicity relation that also depends on the galactocentric distance; (ii) the use of an age-metallicity relation obtained for the galactic disk; and (iii) the determination of ages from the central star masses obtained from the observed nitrogen abundances. Results. We estimated the age distribution of CSPN with average uncertainties of 1-2 Gyr, and compared our results with the expected distribution based both on the observed mass distribution of white dwarfs and on the age distribution derived from available mass distributions of CSPN. Based on our derived age distributions, we conclude that most CSPN in the galactic disk have ages under 6 Gyr, and that the age distribution is peaked around 2-4 Gyr.
Resumo:
We have developed a new procedure to search for carbon-enhanced metal-poor (CEMP) stars from the Hamburg/ESO (HES) prism-survey plates. This method employs an extended line index for the CH G band, which we demonstrate to have superior performance when compared to the narrower G-band index formerly employed to estimate G-band strengths for these spectra. Although CEMP stars have been found previously among candidate metal-poor stars selected from the HES, the selection on metallicity undersamples the population of intermediate-metallicity CEMP stars (-2.5 <= [Fe/H] <= -1.0); such stars are of importance for constraining the onset of the s-process in metal-deficient asymptotic giant branch stars (thought to be associated with the origin of carbon for roughly 80% of CEMP stars). The new candidates also include substantial numbers of warmer carbon-enhanced stars, which were missed in previous HES searches for carbon stars due to selection criteria that emphasized cooler stars. A first subsample, biased toward brighter stars (B < 15.5), has been extracted from the scanned HES plates. After visual inspection (to eliminate spectra compromised by plate defects, overlapping spectra, etc., and to carry out rough spectral classifications), a list of 669 previously unidentified candidate CEMP stars was compiled. Follow-up spectroscopy for a pilot sample of 132 candidates was obtained with the Goodman spectrograph on the SOAR 4.1 m telescope. Our results show that most of the observed stars lie in the targeted metallicity range, and possess prominent carbon absorption features at 4300 angstrom. The success rate for the identification of new CEMP stars is 43% (13 out of 30) for [Fe/H] < -2.0. For stars with [Fe/H] < -2.5, the ratio increases to 80% (four out of five objects), including one star with [Fe/H] < -3.0.
Resumo:
Aims. We present lithium abundance determination for a sample of K giant stars in the Galactic bulge. The stars presented here are the only 13 stars with a detectable lithium line (6767.18 angstrom) among similar to 400 stars for which we have spectra in this wavelength range, half of them in Baade's Window (b = -4 degrees) and half in a field at b = -6 degrees. Methods. The stars were observed with the GIRAFFE spectrograph of FLAMES mounted on VLT, with a spectral resolution of R similar to 20 000. Abundances were derived from spectral synthesis and the results are compared with those of stars with similar parameters, but no detectable Li line. Results. We find 13 stars with a detectable Li line, among which 2 have abundances A(Li) > 2.7. No clear correlations were found between the Li abundance and those of other elements. With the exception of the two most Li rich stars, the others follow a fairly tight A(Li) - T(eff) correlation. Conclusions. There is strong indication of a Li production phase during the red giant branch (RGB), acting either on a very short timescale, or selectively only in some stars. That the proposed Li production phase is associated with the RGB bump cannot be excluded, although our targets are significantly brighter than the predicted RGB bump magnitude for a population at 8 kpc.
Resumo:
The relatively large number of nearby radio-quiet and thermally emitting isolated neutron stars (INSs) discovered in the ROSAT All-Sky Survey, dubbed the ""Magnificent Seven"", suggests that they belong to a formerly neglected major component of the overall INS population. So far, attempts to discover similar INSs beyond the solar vicinity failed to confirm any reliable candidate. The good positional accuracy and soft X-ray sensitivity of the EPIC cameras onboard the XMM-Newton satellite allow us to efficiently search for new thermally emitting INSs. We used the 2XMMp catalogue to select sources with no catalogued candidate counterparts and with X-ray spectra similar to those of the Magnificent Seven, but seen at greater distances and thus undergoing higher interstellar absorptions. Identifications in more than 170 astronomical catalogues and visual screening allowed us to select fewer than 30 good INS candidates. In order to rule out alternative identifications, we obtained deep ESO-VLT and SOAR optical imaging for the X-ray brightest candidates. We report here on the optical follow-up results of our search and discuss the possible nature of 8 of our candidates. A high X-ray-to-optical flux ratio together with a stable flux and soft X-ray spectrum make the brightest source of our sample, 2XMM J104608.7-594306, a newly discovered thermally emitting INS. The X-ray source 2XMM J010642.3+005032 has no evident optical counterpart and should be further investigated. The remaining X-ray sources are most probably identified with cataclysmic variables and active galactic nuclei, as inferred from the colours and flux ratios of their likely optical counterparts. Beyond the finding of new thermally emitting INSs, our study aims at constraining the space density of this Galactic population at great distances and at determining whether their apparently high density is a local anomaly or not.
Resumo:
Context. The detailed chemical abundances of extremely metal-poor (EMP) stars are key guides to understanding the early chemical evolution of the Galaxy. Most existing data, however, treat giant stars that may have experienced internal mixing later. Aims. We aim to compare the results for giants with new, accurate abundances for all observable elements in 18 EMP turno. stars. Methods. VLT/UVES spectra at R similar to 45 000 and S/N similar to 130 per pixel (lambda lambda 330-1000 nm) are analysed with OSMARCS model atmospheres and the TURBOSPECTRUM code to derive abundances for C, Mg, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, and Ba. Results. For Ca, Ni, Sr, and Ba, we find excellent consistency with our earlier sample of EMP giants, at all metallicities. However, our abundances of C, Sc, Ti, Cr, Mn and Co are similar to 0.2 dex larger than in giants of similar metallicity. Mg and Si abundances are similar to 0.2 dex lower (the giant [Mg/Fe] values are slightly revised), while Zn is again similar to 0.4 dex higher than in giants of similar [Fe/H] (6 stars only). Conclusions. For C, the dwarf/giant discrepancy could possibly have an astrophysical cause, but for the other elements it must arise from shortcomings in the analysis. Approximate computations of granulation (3D) effects yield smaller corrections for giants than for dwarfs, but suggest that this is an unlikely explanation, except perhaps for C, Cr, and Mn. NLTE computations for Na and Al provide consistent abundances between dwarfs and giants, unlike the LTE results, and would be highly desirable for the other discrepant elements as well. Meanwhile, we recommend using the giant abundances as reference data for Galactic chemical evolution models.
Resumo:
Aims. To detect line effects using spectropolarimetry in order to find evidence of rotating disks and their respective symmetry axes in T Tauri stars. Methods. We used the IAGPOL imaging polarimeter along with the Eucalyptus-IFU to obtain spectropolarimetric measurements of the T Tauri stars RY Tau (two epochs) and PX Vul (one epoch). Evidence of line effects showing a loop in the Q-U diagram favors a compact rather than an extended source for the line photons in a rotating disk. In addition, the polarization position angle (PA) obtained using the line effect can constrain the symmetry axis of the disk. Results. RY Tau shows a variable H alpha double peak in 2004-2005 data. A polarization line effect is evident in the Q-U diagram for both epochs confirming a clockwise rotating disk. A single loop is evident in 2004 changing to a linear excursion plus a loop in 2005. Interestingly, the intrinsic PA calculated using the line effect is consistent between our two epochs (similar to 167 degrees). An alternative intrinsic PA computed from the interstellar polarization-corrected continuum and averaged between 2001-2005 yielded a PA similar to 137 degrees. This last value is closer to perpendicular to the observed disk direction (similar to 25 degrees), as expected from single scattering in an optically thin disk. For PX Vul, we detected spectral variability in H alpha along with non-variable continuum polarization when compared with previous data. The Q-U diagram shows a well-defined loop in H alpha associated with a counter-clockwise rotating disk. The symmetry axis inferred from the line effect has a PA similar to 91 degrees (with an ambiguity of 90 degrees). Our results confirm previous evidence that the emission line in T Tauri stars has its origin in a compact source scattered off a rotating accretion disk.
Resumo:
The remarkable astrometric capabilities of the Chandra Observatory offer the possibility to measure proper motions of X-ray sources with an unprecedented accuracy in this wavelength range. We recently completed a proper motion survey of three of the seven thermally emitting radio-quiet isolated neutron stars (INSs) discovered in the ROSAT all-sky survey. These INSs (RXJ0420.0-5022, RXJ0806.4-4123 and RXJ1308.6+2127) either lack an optical counterpart or have one so faint that ground based or space born optical observations push the current possibilities of the instrumentation to the limit. Pairs of ACIS observations were acquired 3 to 5 years apart to measure the displacement of the sources on the X-ray sky using as a reference the background of extragalactic or remote Galactic X-ray sources. We derive 2 sigma upper limits of 123 mas yr(-1) and 86 mas yr(-1) on the proper motion of RXJ0420.0-5022 and RXJ0806.4-4123, respectively. RXJ1308.6+2127 exhibits a very significant displacement (similar to 9 sigma) yielding mu = 220 +/- 25 mas yr(-1), the second fastest measured among all ROSAT-discovered INSs. The source is probably moving away rapidly from the Galactic plane at a speed which precludes any significant accretion of matter from the interstellar medium. Its transverse velocity of similar to 740 (d/700 pc) km s(-1) might be the largest of all ROSAT INSs and its corresponding spatial velocity lies among the fastest recorded for neutron stars. RXJ1308.6+2127 is thus a middle-aged (age similar to 1 My) high velocity cooling neutron star. We investigate its possible origin in nearby OB associations or from a field OB star. In most cases, the flight time from birth place appears significantly shorter than the characteristic age derived from spin down rate. Overall, the distribution in transverse velocity of the ROSAT INSs is not statistically different from that of normal radio pulsars.
Resumo:
Barium stars are optimal sites for studying the correlations between the neutron-capture elements and other species that may be depleted or enhanced, because they act as neutron seeds or poisons during the operation of the s-process. These data are necessary to help constrain the modeling of the neutron-capture paths and explain the s-process abundance curve of the solar system. Chemical abundances for a large number of barium stars with different degrees of s-process excesses, masses, metallicities, and evolutionary states are a crucial step towards this goal. We present abundances of Mn, Cu, Zn, and various light and heavy elements for a sample of barium and normal giant stars, and present correlations between abundances contributed to different degrees by the weak-s, mains, and r-processes of neutron capture, between Fe-peak elements and heavy elements. Data from the literature are also considered in order to better study the abundance pattern of peculiar stars. The stellar spectra were observed with FEROS/ESO. The stellar atmospheric parameters of the eight barium giant stars and six normal giants that we analyzed lie in the range 4300 < T(eff)/K < 5300, -0.7 < [Fe/H] <= 0.12 and 1.5 <= log g < 2.9. Carbon and nitrogen abundances were derived by spectral synthesis of the molecular bands of C(2), CH, and CN. For all other elements we used the atomic lines to perform the spectral synthesis. A very large scatter was found mainly for the Mn abundances when data from the literature were considered. We found that [Zn/Fe] correlates well with the heavy element excesses, its abundance clearly increasing as the heavy element excesses increase, a trend not shown by the [Cu/Fe] and [Mn/Fe] ratios. Also, the ratios involving Mn, Cu, and Zn and heavy elements usually show an increasing trend toward higher metallicities. Our results suggest that a larger fraction of the Zn synthesis than of Cu is owed to massive stars, and that the contribution of the main-s process to the synthesis of both elements is small. We also conclude that Mn is mostly synthesized by SN Ia, and that a non-negligible fraction of the synthesis of Mn, Cu, and Zn is owed to the weak s-process.
Resumo:
We show that scalable multipartite entanglement among light fields may be generated by optical parametric oscillators (OPOs). The tripartite entanglement existent among the three bright beams produced by a single OPO-pump, signal, and idler-is scalable to a system of many OPOs by pumping them in cascade with the same optical field. This latter serves as an entanglement distributor. The special case of two OPOs is studied, as it is shown that the resulting five bright beams share genuine multipartite entanglement. In addition, the structure of entanglement distribution among the fields can be manipulated to some degree by tuning the incident pump power. The scalability to many fields is straightforward, allowing an alternative implementation of a multipartite quantum information network with continuous variables.
Resumo:
Void of any inherent structure in classical physics, the vacuum has revealed to be incredibly crowded with all sorts of processes in relativistic quantum physics. Yet, its direct effects are usually so subtle that its structure remains almost as evasive as in classical physics. Here, in contrast, we report on the discovery of a novel effect according to which the vacuum is compelled to play an unexpected central role in an astrophysical context. We show that the formation of relativistic stars may lead the vacuum energy density of a quantum field to an exponential growth. The vacuum-driven evolution which would then follow may lead to unexpected implications for astrophysics, while the observation of stable neutron-star configurations may teach us much on the field content of our Universe.
Resumo:
An exciting unsolved problem in the study of high energy processes of early type stars concerns the physical mechanism for producing X-rays near the Be star gamma Cassiopeiae. By now we know that this source and several ""gamma Cas analogs"" exhibit an unusual hard thermal X-ray spectrum, compared both to normal massive stars and the non-thermal emission of known Be/X-ray binaries. Also, its light curve is variable on almost all conceivable timescales. In this study we reanalyze a high dispersion spectrum obtained by Chandra in 2001 and combine it with the analysis of a new (2004) spectrum and light curve obtained by XMM-Newton. We find that both spectra can be fit well with 3-4 optically thin, thermal components consisting of a hot component having a temperature kT(Q) similar to 12-14 keV, perhaps one with a value of similar to 2.4 keV, and two with well defined values near 0.6 keV and 0.11 keV. We argue that these components arise in discrete (almost monothermal) plasmas. Moreover, they cannot be produced within an integral gas structure or by the cooling of a dominant hot process. Consistent with earlier findings, we also find that the Fe abundance arising from K-shell ions is significantly subsolar and less than the Fe abundance from L-shell ions. We also find novel properties not present in the earlier Chandra spectrum, including a dramatic decrease in the local photoelectric absorption of soft X-rays, a decrease in the strength of the Fe and possibly of the Si K fluorescence features, underpredicted lines in two ions each of Ne and N (suggesting abundances that are similar to 1.5-3x and similar to 4x solar, respectively), and broadening of the strong NeXLy alpha and OVIII Ly alpha lines. In addition, we note certain traits in the gamma Cas spectrum that are different from those of the fairly well studied analog HD110432 - in this sense the stars have different ""personalities."" In particular, for gamma Cas the hot X-ray component remains nearly constant in temperature, and the photoelectric absorption of the X-ray plasmas can change dramatically. As found by previous investigators of gamma Cas, changes in flux, whether occurring slowly or in rapidly evolving flares, are only seldomly accompanied by variations in hardness. Moreover, the light curve can show a ""periodicity"" that is due to the presence of flux minima that recur semiregularly over a few hours, and which can appear again at different epochs.
Resumo:
We consider binary infinite order stochastic chains perturbed by a random noise. This means that at each time step, the value assumed by the chain can be randomly and independently flipped with a small fixed probability. We show that the transition probabilities of the perturbed chain are uniformly close to the corresponding transition probabilities of the original chain. As a consequence, in the case of stochastic chains with unbounded but otherwise finite variable length memory, we show that it is possible to recover the context tree of the original chain, using a suitable version of the algorithm Context, provided that the noise is small enough.
Resumo:
It is widely assumed that optimal timing of larval release is of major importance to offspring survival, but the extent to which environmental factors entrain synchronous reproductive rhythms in natural populations is not well known. We sampled the broods of ovigerous females of the common shore crab Pachygrapsus transversus at both sheltered and exposed rocky shores interspersed along a so-km coastline, during four different periods, to better assess inter-population differences of larval release timing and to test for the effect of wave action. Shore-specific patterns were consistent through time. Maximum release fell within 1 day around syzygies on all shores, which matched dates of maximum tidal amplitude. Within this very narrow range, populations at exposed shores anticipated hatching compared to those at sheltered areas, possibly due to mechanical stimulation by wave action. Average departures from syzygial release ranged consistently among shores from 2.4 to 3.3 days, but in this case we found no evidence for the effect of wave exposure. Therefore, processes varying at the scale of a few kilometres affect the precision of semilunar timing and may produce differences in the survival of recently hatched larvae. Understanding the underlying mechanisms causing departures from presumed optimal release timing is thus important for a more comprehensive evaluation of reproductive success of invertebrate populations.
Resumo:
This research employs solid-state actuators for delay of flow separation seen in airfoils at low Reynolds numbers. The flow control technique investigated here is aimed for a variable camber airfoil that employs two active surfaces and a single four-bar (box) mechanism as the internal structure. To reduce separation, periodic excitation to the flow around the leading edge of the airfoil is induced by a total of nine piezocomposite actuated clamped-free unimorph benders distributed in the spanwise direction. An electromechanical model is employed to design an actuator capable of high deformations at the desired frequency for lift improvement at post-stall angles. The optimum spanwise distribution of excitation for increasing lift coefficient is identified experimentally in the wind tunnel. A 3D (non-uniform) excitation distribution achieved higher lift enhancement in the post-stall region with lower power consumption when compared to the 2D (uniform) excitation distribution. A lift coefficient increase of 18.4% is achieved with the identified non-uniform excitation mode at the bender resonance frequency of 125 Hz, the flow velocity of 5 m/s and at the reduced frequency of 3.78. The maximum lift (Clmax) is increased 5.2% from the baseline. The total power consumption of the flow control technique is 639 mW(RMS).