998 resultados para Variability Modeling
Resumo:
Substantial low-frequency rainfall fluctuations occurred in the Sahel throughout the twentieth century, causing devastating drought. Modeling these low-frequency rainfall fluctuations has remained problematic for climate models for many years. Here we show using a combination of state-of-the-art rainfall observations and high-resolution global climate models that changes in organized heavy rainfall events carry most of the rainfall variability in the Sahel at multiannual to decadal time scales. Ability to produce intense, organized convection allows climate models to correctly simulate the magnitude of late-twentieth century rainfall change, underlining the importance of model resolution. Increasing model resolution allows a better coupling between large-scale circulation changes and regional rainfall processes over the Sahel. These results provide a strong basis for developing more reliable and skilful long-term predictions of rainfall (seasons to years) which could benefit many sectors in the region by allowing early adaptation to impending extremes.
Resumo:
The interannual-decadal variability of the wintertime mixed layer depths (MLDs) over the North Pacific is investigated from an empirical orthogonal function (EOF) analysis of an ensemble of global ocean reanalyses. The first leading EOF mode represents the interannual MLD anomalies centered in the eastern part of the central mode water formation region in phase opposition with those in the eastern subtropics and the central Alaskan Gyre. This first EOF mode is highly correlated with the Pacific decadal oscillation index on both the interannual and decadal time scales. The second leading EOF mode represents the MLD variability in the subtropical mode water (STMW) formation region and has a good correlation with the wintertime West Pacific (WP) index with time lag of 3 years, suggesting the importance of the oceanic dynamical response to the change in the surface wind field associated with the meridional shifts of the Aleutian Low. The above MLD variabilities are in basic agreement with previous observational and modeling findings. Moreover the reanalysis ensemble provides uncertainty estimates. The interannual MLD anomalies in the first and second EOF modes are consistently represented by the individual reanalyses and the amplitudes of the variabilities generally exceed the ensemble spread of the reanalyses. Besides, the resulting MLD variability indices, spanning the 1948–2012 period, should be helpful for characterizing the North Pacific climate variability. In particular, a 6-year oscillation including the WP teleconnection pattern in the atmosphere and the oceanic MLD variability in the STMW formation region is first detected.
Resumo:
FS CMa type stars are a recently described group of objects with the B[e] phenomenon which exhibits strong emission-line spectra and strong IR excesses. In this paper, we report the first attempt for a detailed modeling of IRAS 00470+6429, for which we have the best set of observations. Our modeling is based on two key assumptions: the star has a main-sequence luminosity for its spectral type (B2) and the circumstellar (CS) envelope is bimodal, composed of a slowly outflowing disklike wind and a fast polar wind. Both outflows are assumed to be purely radial. We adopt a novel approach to describe the dust formation site in the wind that employs timescale arguments for grain condensation and a self-consistent solution for the dust destruction surface. With the above assumptions we were able to satisfactorily reproduce many observational properties of IRAS 00470+6429, including the Hi line profiles and the overall shape of the spectral energy distribution. Our adopted recipe for dust formation proved successful in reproducing the correct amount of dust formed in the CS envelope. Possible shortcomings of our model, as well as suggestions for future improvements, are discussed.
Resumo:
We investigate the depositional time scale of lithological couplets (fine sandstone/siltstone-siltstone/mudstone) from two distinctive outcrops of Permo-Carboniferous glacial rhythmites in the Itarare Group (Parana Basin, Brazil). Resolving the fundamental issue of time scale for these rhythmites is important in light of recent evidence for paleosecular variation measured in these sequences. Spectral analysis and tuning of high-resolution gray scale scans of sediment core microstratigraphy, which comprises pervasive laminations, reveal a comparable spectral content at both localities, with a frequency suite interpreted as that of short-term climate variability of Recent and modern times. This evidence for decadal- to centennial-scale deposition of these lithological couplets is discussed in light of the `varvic` character, i.e., annual time scale that was previously assumed for the rhythmites.
Resumo:
In this paper, we present different ofrailtyo models to analyze longitudinal data in the presence of covariates. These models incorporate the extra-Poisson variability and the possible correlation among the repeated counting data for each individual. Assuming a CD4 counting data set in HIV-infected patients, we develop a hierarchical Bayesian analysis considering the different proposed models and using Markov Chain Monte Carlo methods. We also discuss some Bayesian discrimination aspects for the choice of the best model.
Resumo:
A técnica de agricultura de precisão e a relação solo-paisagem permitem delimitar áreas para o manejo localizado, o que permite a aplicação localizada de insumos agrícolas e, consequentemente, pode contribuir para a preservação de recursos naturais. Portanto, o objetivo deste trabalho foi caracterizar a variabilidade espacial das propriedades químicas e do teor de argila, no contexto da relação solo-paisagem, em um Latossolo sob cultivo de citros. Amostras de solo foram coletadas na profundidade de 0,0-0,2 m, em uma área de 83,5 ha cultivada com citros, na forma de malha, com intervalos regulares de 50 m, com 129 pontos na forma de relevo côncava e 206 pontos na forma plana, totalizando 335 pontos. Os valores obtidos para as variáveis que expressam as propriedades químicas e para o teor de argila do solo foram submetidos à análise estatística descritiva e geoestatística com a modelagem de semivariogramas para a confecção de mapas de krigagem. Os valores de alcance e mapas de krigagem indicaram maiores variabilidades na forma de relevo côncava (segmento topo), quando comparada com a forma plana (segmentos meia encosta e encosta inferior). A identificação de diferentes formas de relevo mostrou-se eficiente no entendimento da variabilidade espacial das propriedades químicas e do teor de argila do solo sob cultivo de citros.
Resumo:
The performance of 36 models (22 ocean color models and 14 biogeochemical ocean circulation models (BOGCMs)) that estimate depth-integrated marine net primary productivity (NPP) was assessed by comparing their output to in situ (14)C data at the Bermuda Atlantic Time series Study (BATS) and the Hawaii Ocean Time series (HOT) over nearly two decades. Specifically, skill was assessed based on the models' ability to estimate the observed mean, variability, and trends of NPP. At both sites, more than 90% of the models underestimated mean NPP, with the average bias of the BOGCMs being nearly twice that of the ocean color models. However, the difference in overall skill between the best BOGCM and the best ocean color model at each site was not significant. Between 1989 and 2007, in situ NPP at BATS and HOT increased by an average of nearly 2% per year and was positively correlated to the North Pacific Gyre Oscillation index. The majority of ocean color models produced in situ NPP trends that were closer to the observed trends when chlorophyll-alpha was derived from high-performance liquid chromatography (HPLC), rather than fluorometric or SeaWiFS data. However, this was a function of time such that average trend magnitude was more accurately estimated over longer time periods. Among BOGCMs, only two individual models successfully produced an increasing NPP trend (one model at each site). We caution against the use of models to assess multiannual changes in NPP over short time periods. Ocean color model estimates of NPP trends could improve if more high quality HPLC chlorophyll-alpha time series were available.
Resumo:
Nowadays, the culture of the sugarcane plays an important role regarding the Brazilian reality, especially in the aspect related to the alternative energy sources. In 2009, the municipality of Suzanapolis (SP), in the Brazilian Cerrado, an experiment was conducted with the culture of the sugarcane in a Red eutrophic, with the aim of selecting, using Pearson correlation coefficients, modeling, simple, linear and multiple regressions and spatial correlation, and also the best technological and productive components, to explain the variability of the productivity of the sugarcane. The geostatistical grid was installed in order to collect the data, with 120 sampling points, in an area of 14.53 ha. For the simple linear regressions, the plants population is the component of production that presents the best quadratic correlation with the productivity of the sugarcane, given by: PRO = -0.553**xPOP(2)+16.14*xPOP-15.77. However, for multiple linear regressions, the equation PRO = -21.11+4.92xPOP**+0.76xPUR** is the one that best presents in order to estimate that productivity. Spatially, the best correlation with yield of the sugarcane is also determined by the component of the production population of plants.
Resumo:
Planetary waves are key to large-scale dynamical adjustment in the global ocean as they transfer energy from the east to the west side of oceanic basins; they connect the forcing in the ocean interior with the variability at its boundaries: and they change the local heat content, thus coupling oceanic, atmospheric, and biological processes. Planetary waves, mostly of the first baroclinic mode, are observed as distinctive patterns in global time series of sea surface height anomaly (SSHA) and heat storage. The goal of this study is to compare and validate large-scale SSHA signals from coupled ocean-atmosphere general circulation Model for Interdisciplinary Research on Climate (MIROC) with TOPEX/POSEIDON satellite altimeter observations. The last decade of the models` time series is selected for comparison with the altimeter data. The wave patterns are separated from the meso- and large-scale SSHA signals by digital filters calibrated to select the same spectral bands in both model and altimeter data. The band-wise comparison allows for an assessment of the model skill to simulate the dynamical components of the observed wave field. Comparisons regarding both the seasonal cycle and the Rossby wave Held differ significantly among basins. When carried within the same basin, differences can occur between equal latitudes in opposite hemispheres. Furthermore, at some latitudes the MIROC reproduces biannual, annual and semiannual planetary waves with phase speeds and average amplitudes similar to those observed by the altimeter, but with significant differences in phase. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The growth parameters (growth rate, mu and lag time, lambda) of three different strains each of Salmonella enterica and Listeria monocytogenes in minimally processed lettuce (MPL) and their changes as a function of temperature were modeled. MPL were packed under modified atmosphere (5% O-2, 15% CO2 and 80% N-2), stored at 7-30 degrees C and samples collected at different time intervals were enumerated for S. enterica and L monocytogenes. Growth curves and equations describing the relationship between mu and lambda as a function of temperature were constructed using the DMFit Excel add-in and through linear regression, respectively. The predicted growth parameters for the pathogens observed in this study were compared to ComBase, Pathogen modeling program (PMP) and data from the literature. High R-2 values (0.97 and 0.93) were observed for average growth curves of different strains of pathogens grown on MPL Secondary models of mu and lambda for both pathogens followed a linear trend with high R2 values (>0.90). Root mean square error (RMSE) showed that the models obtained are accurate and suitable for modeling the growth of S. enterica and L monocytogenes in MP lettuce. The current study provides growth models for these foodborne pathogens that can be used in microbial risk assessment. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Species distribution models (SDMs) can be useful for different conservation purposes. We discuss the importance of fitting spatial scale and using current records and relevant predictors aiming conservation. We choose jaguar (Panthera onca) as a target species and Brazil and Atlantic Forest biome as study areas. We tested two different extents (continent and biome) and resolutions (similar to 4 Km and similar to 1 Km) in Maxent with 186 records and 11 predictors (bioclimatic, elevation, land-use and landscape structure). All models presented satisfactory AUC values (>0.70) and low omission errors (<23%). SDMs were scale-sensitive as the use of reduced extent implied in significant gains to model performance generating more constrained and real predictive distribution maps. Continental-scale models performed poorly in predicting potential current jaguar distribution, but they reached the historic distribution. Specificity increased significantly from coarse to finer-scale models due to the reduction of overprediction. The variability of environmental space (E-space) differed for most of climatic variables between continental and biome-scale and the representation of the E-space by predictors differed significantly (t = 2.42, g.I. = 9, P < 0.05). Refining spatial scale, incorporating landscape variables and improving the quality of biological data are essential for improving model prediction for conservation purposes.
Resumo:
Aims. We report on simultaneous observations and modeling of mid-infrared (MIR), near-infrared (NIR), and submillimeter (sub-mm) emission of the source Sgr A * associated with the supermassive black hole at the center of our Galaxy. Our goal was to monitor the activity of Sgr A* at different wavelengths in order to constrain the emitting processes and gain insight into the nature of the close environment of Sgr A*. Methods. We used the MIR instrument VISIR in the BURST imaging mode, the adaptive optics assisted NIR camera NACO, and the sub-mm antenna APEX to monitor Sgr A* over several nights in July 2007. Results. The observations reveal remarkable variability in the NIR and sub-mm during the five nights of observation. No source was detected in the MIR, but we derived the lowest upper limit for a flare at 8.59 mu m (22.4 mJy with A(8.59 mu m) = 1.6 +/- 0.5). This observational constraint makes us discard the observed NIR emission as coming from a thermal component emitting at sub-mm frequencies. Moreover, comparison of the sub-mm and NIR variability shows that the highest NIR fluxes (flares) are coincident with the lowest sub-mm levels of our five-night campaign involving three flares. We explain this behavior by a loss of electrons to the system and/or by a decrease in the magnetic field, as might conceivably occur in scenarios involving fast outflows and/or magnetic reconnection.
Resumo:
During the last decade peach and nectarine fruit have lost considerable market share, due to increased consumer dissatisfaction with quality at retail markets. This is mainly due to harvesting of too immature fruit and high ripening heterogeneity. The main problem is that the traditional used maturity indexes are not able to objectively detect fruit maturity stage, neither the variability present in the field, leading to a difficult post-harvest management of the product and to high fruit losses. To assess more precisely the fruit ripening other techniques and devices can be used. Recently, a new non-destructive maturity index, based on the vis-NIR technology, the Index of Absorbance Difference (IAD), that correlates with fruit degreening and ethylene production, was introduced and the IAD was used to study peach and nectarine fruit ripening from the “field to the fork”. In order to choose the best techniques to improve fruit quality, a detailed description of the tree structure, of fruit distribution and ripening evolution on the tree was faced. More in details, an architectural model (PlantToon®) was used to design the tree structure and the IAD was applied to characterize the maturity stage of each fruit. Their combined use provided an objective and precise evaluation of the fruit ripening variability, related to different training systems, crop load, fruit exposure and internal temperature. Based on simple field assessment of fruit maturity (as IAD) and growth, a model for an early prediction of harvest date and yield, was developed and validated. The relationship between the non-destructive maturity IAD, and the fruit shelf-life, was also confirmed. Finally the obtained results were validated by consumer test: the fruit sorted in different maturity classes obtained a different consumer acceptance. The improved knowledge, leaded to an innovative management of peach and nectarine fruit, from “field to market”.
Resumo:
Atmospheric aerosol particles serving as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate. Knowledge of the spatial and temporal distribution of CCN in the atmosphere is essential to understand and describe the effects of aerosols in meteorological models. In this study, CCN properties were measured in polluted and pristine air of different continental regions, and the results were parameterized for efficient prediction of CCN concentrations.The continuous-flow CCN counter used for size-resolved measurements of CCN efficiency spectra (activation curves) was calibrated with ammonium sulfate and sodium chloride aerosols for a wide range of water vapor supersaturations (S=0.068% to 1.27%). A comprehensive uncertainty analysis showed that the instrument calibration depends strongly on the applied particle generation techniques, Köhler model calculations, and water activity parameterizations (relative deviations in S up to 25%). Laboratory experiments and a comparison with other CCN instruments confirmed the high accuracy and precision of the calibration and measurement procedures developed and applied in this study.The mean CCN number concentrations (NCCN,S) observed in polluted mega-city air and biomass burning smoke (Beijing and Pearl River Delta, China) ranged from 1000 cm−3 at S=0.068% to 16 000 cm−3 at S=1.27%, which is about two orders of magnitude higher than in pristine air at remote continental sites (Swiss Alps, Amazonian rainforest). Effective average hygroscopicity parameters, κ, describing the influence of chemical composition on the CCN activity of aerosol particles were derived from the measurement data. They varied in the range of 0.3±0.2, were size-dependent, and could be parameterized as a function of organic and inorganic aerosol mass fraction. At low S (≤0.27%), substantial portions of externally mixed CCN-inactive particles with much lower hygroscopicity were observed in polluted air (fresh soot particles with κ≈0.01). Thus, the aerosol particle mixing state needs to be known for highly accurate predictions of NCCN,S. Nevertheless, the observed CCN number concentrations could be efficiently approximated using measured aerosol particle number size distributions and a simple κ-Köhler model with a single proxy for the effective average particle hygroscopicity. The relative deviations between observations and model predictions were on average less than 20% when a constant average value of κ=0.3 was used in conjunction with variable size distribution data. With a constant average size distribution, however, the deviations increased up to 100% and more. The measurement and model results demonstrate that the aerosol particle number and size are the major predictors for the variability of the CCN concentration in continental boundary layer air, followed by particle composition and hygroscopicity as relatively minor modulators. Depending on the required and applicable level of detail, the measurement results and parameterizations presented in this study can be directly implemented in detailed process models as well as in large-scale atmospheric and climate models for efficient description of the CCN activity of atmospheric aerosols.
Resumo:
Body-centric communications are emerging as a new paradigm in the panorama of personal communications. Being concerned with human behaviour, they are suitable for a wide variety of applications. The advances in the miniaturization of portable devices to be placed on or around the body, foster the diffusion of these systems, where the human body is the key element defining communication characteristics. This thesis investigates the human impact on body-centric communications under its distinctive aspects. First of all, the unique propagation environment defined by the body is described through a scenario-based channel modeling approach, according to the communication scenario considered, i.e., on- or on- to off-body. The novelty introduced pertains to the description of radio channel features accounting for multiple sources of variability at the same time. Secondly, the importance of a proper channel characterisation is shown integrating the on-body channel model in a system level simulator, allowing a more realistic comparison of different Physical and Medium Access Control layer solutions. Finally, the structure of a comprehensive simulation framework for system performance evaluation is proposed. It aims at merging in one tool, mobility and social features typical of the human being, together with the propagation aspects, in a scenario where multiple users interact sharing space and resources.