902 resultados para Variância residual
Resumo:
The integral diaphragm pressure transducer consists of a diaphragm machined from precipitation hardened martensitic (APX4) steel. Its performance is quite significant as it depends upon various factors such as mechanical properties including induced residual stress levels, metallurgical and physical parameters due to different stages of processing involved. Hence, the measurement and analysis of residual stress becomes very important from the point of in-service assessment of a component. In the present work, the stress measurements have been done using the X-ray diffraction (XRD) technique, which is a non-destructive test (NDT). This method is more reliable and widely used compared to the other NDT techniques. The metallurgical aspects have been studied by adopting the conventional metallographic practices including examination of microstructure using light microscope. The dimensional measurements have been carried out using dimensional gauge. The results of the present investigation reveals that the diaphragm material after undergoing series of realization processes has yielded good amount of retained austenite in it. Also, the presence of higher compressive stresses induced in the transducer results in non-linearity, zero shift and dimensional instability. The problem of higher retained austenite content and higher compressive stress have been overcome by adopting a new realization process involving machining and cold and hot stabilization soak which has brought down the retained austenite content to about 5–6% and acceptable level of compressive stress in the range −100 to −150 MPa with fine tempered martensitic phase structure and good dimensional stability. The new realization process seems to be quite effective in terms of controlling retained austenite content, residual stress, metallurgical phase as well as dimensional stability and this may result in minimum zero shift of the diaphragm system.
Resumo:
In conventional analysis and design procedures of reinforced concrete structures, the ability of concrete to resist tension is neglected. Under cyclic loading, the tension-softening behavior of concrete influences its residual strength and subsequent crack propagation. The stability and the residual strength of a cracked reinforced concrete member under fatigue loading, depends on a number of factors such as, reinforcement ratio, specimen size, grade of concrete, and the fracture properties, and also on the tension-softening behavior of concrete. In the present work, a method is proposed to assess the residual strength of a reinforced concrete member subjected to cyclic loading. The crack extension resistance based approach is used for determining the condition for unstable crack propagation. Three different idealization of tension softening models are considered to study the effect of post-peak response of concrete. The effect of reinforcement is modeled as a closing force counteracting the effect of crack opening produced by the external moment. The effect of reinforcement percentage and specimen size on the failure of reinforced beams is studied. Finally, the residual strength of the beams are computed by including the softening behavior of concrete.
Resumo:
A health-monitoring and life-estimation strategy for composite rotor blades is developed in this work. The cross-sectional stiffness reduction obtained by physics-based models is expressed as a function of the life of the structure using a recent phenomenological damage model. This stiffness reduction is further used to study the behavior of measurable system parameters such as blade deflections, loads, and strains of a composite rotor blade in static analysis and forward flight. The simulated measurements are obtained using an aeroelastic analysis of the composite rotor blade based on the finite element in space and time with physics-based damage modes that are then linked to the life consumption of the blade. The model-based measurements are contaminated with noise to simulate real data. Genetic fuzzy systems are developed for global online prediction of physical damage and life consumption using displacement- and force-based measurement deviations between damaged and undamaged conditions. Furthermore, local online prediction of physical damage and life consumption is done using strains measured along the blade length. It is observed that the life consumption in the matrix-cracking zone is about 12-15% and life consumption in debonding/delamination zone is about 45-55% of the total life of the blade. It is also observed that the success rate of the genetic fuzzy systems depends upon the number of measurements, type of measurements and training, and the testing noise level. The genetic fuzzy systems work quite well with noisy data and are recommended for online structural health monitoring of composite helicopter rotor blades.
Resumo:
Powder x-ray diffraction study of Mn2NiGa ferromagnetic shape memory alloy shows the existence of a 7M monoclinic modulated structure at room temperature (RT). The structure of Mn2NiGa is found to be highly dependent on residual stress. For higher stress, the structure is tetragonal at RT, and for intermediate stress it is 7M monoclinic. However, only when the stress is considerably relaxed, the structure is cubic, as is expected at RT since the martensitic transition temperature is 230 K.
Resumo:
The present study examines the shrinkage behaviour of residually derived black cotton (BC) soil and red soil compacted specimens that were subjected to air-drying from the swollen state. The soil specimens were compacted at varying dry density and moisture contents to simulate varied field conditions. The void ratio and moisture content of the swollen specimens were monitored during the drying process and relationship between them is analyzed. Shrinkage is represented as reduction in void ratio with decrease in water content of soil specimens. It is found to occur in three distinct stages. Total shrinkage magnitude depends on the type of clay mineral present. Variation in compaction conditions effect marginally total shrinkage magnitudes of BC soil specimens but have relatively more effect on red soil specimens. A linear relation is obtained between total shrinkage magnitude and volumetric water content of soil specimens in swollen state and can be used to predict the shrinkage magnitude of soils.
Resumo:
Protein conformations and dynamics can be studied by nuclear magnetic resonance spectroscopy using dilute liquid crystalline samples. This work clarifies the interpretation of residual dipolar coupling data yielded by the experiments. It was discovered that unfolded proteins without any additional structure beyond that of a mere polypeptide chain exhibit residual dipolar couplings. Also, it was found that molecular dynamics induce fluctuations in the molecular alignment and doing so affect residual dipolar couplings. The finding clarified the origins of low order parameter values observed earlier. The work required the development of new analytical and computational methods for the prediction of intrinsic residual dipolar coupling profiles for unfolded proteins. The presented characteristic chain model is able to reproduce the general trend of experimental residual dipolar couplings for denatured proteins. The details of experimental residual dipolar coupling profiles are beyond the analytical model, but improvements are proposed to achieve greater accuracy. A computational method for rapid prediction of unfolded protein residual dipolar couplings was also developed. Protein dynamics were shown to modulate the effective molecular alignment in a dilute liquid crystalline medium. The effects were investigated from experimental and molecular dynamics generated conformational ensembles of folded proteins. It was noted that dynamics induced alignment is significant especially for the interpretation of molecular dynamics in small, globular proteins. A method of correction was presented. Residual dipolar couplings offer an attractive possibility for the direct observation of protein conformational preferences and dynamics. The presented models and methods of analysis provide significant advances in the interpretation of residual dipolar coupling data from proteins.
Resumo:
This paper deals with the development of simplified semi-empirical relations for the prediction of residual velocities of small calibre projectiles impacting on mild steel target plates, normally or at an angle, and the ballistic limits for such plates. It has been shown, for several impact cases for which test results on perforation of mild steel plates are available, that most of the existing semi-empirical relations which are applicable only to normal projectile impact do not yield satisfactory estimations of residual velocity. Furthermore, it is difficult to quantify some of the empirical parameters present in these relations for a given problem. With an eye towards simplicity and ease of use, two new regression-based relations employing standard material parameters have been discussed here for predicting residual velocity and ballistic limit for both normal and oblique impact. The latter expressions differ in terms of usage of quasi-static or strain rate-dependent average plate material strength. Residual velocities yielded by the present semi-empirical models compare well with the experimental results. Additionally, ballistic limits from these relations show close correlation with the corresponding finite element-based predictions.
Resumo:
Aims: Develop and validate tools to estimate residual noise covariance in Planck frequency maps. Quantify signal error effects and compare different techniques to produce low-resolution maps. Methods: We derive analytical estimates of covariance of the residual noise contained in low-resolution maps produced using a number of map-making approaches. We test these analytical predictions using Monte Carlo simulations and their impact on angular power spectrum estimation. We use simulations to quantify the level of signal errors incurred in different resolution downgrading schemes considered in this work. Results: We find an excellent agreement between the optimal residual noise covariance matrices and Monte Carlo noise maps. For destriping map-makers, the extent of agreement is dictated by the knee frequency of the correlated noise component and the chosen baseline offset length. The significance of signal striping is shown to be insignificant when properly dealt with. In map resolution downgrading, we find that a carefully selected window function is required to reduce aliasing to the sub-percent level at multipoles, ell > 2Nside, where Nside is the HEALPix resolution parameter. We show that sufficient characterization of the residual noise is unavoidable if one is to draw reliable contraints on large scale anisotropy. Conclusions: We have described how to compute the low-resolution maps, with a controlled sky signal level, and a reliable estimate of covariance of the residual noise. We have also presented a method to smooth the residual noise covariance matrices to describe the noise correlations in smoothed, bandwidth limited maps.
Resumo:
This paper deals with the simulation-driven study of the impact of hardened steel projectiles on thin aluminium target plates using explicit finite element analysis as implemented in LS-DYNA. The evaluation of finite element modelling includes a comprehensive mesh convergence study using shell elements for representing target plates and the solid element-based representation of ogivalnosed projectiles. A user-friendly automatic contact detection algorithm is used for capturing interaction between the projectile and the target plate. It is shown that the proper choice of mesh density and strain rate-dependent material properties is crucial as these parameters significantly affect the computed residual velocity. The efficacy of correlation with experimental data is adjudged in terms of a 'correlation index' defined in the present study for which values close to unity are desirable.By simulating laboratory impact tests on thin aluminium plates carried out by earlier investigators, extremely good prediction of experimental ballistic limits has been observed with correlation indices approaching unity. Additional simulation-based parametric studies have been carried out and results consistent with test data have been obtained. The simulation procedures followed in the present study can be applied with confidence in designing thin aluminium armour plates for protection against low calibre projectiles.
Resumo:
A two dimensional correlation experiment for the measurement of short and long range homo- and hetero- nuclear residual dipolar couplings (RDCs) from the broad and featureless proton NMR spectra including C-13 satellites is proposed. The method employs a single natural abundant C-13 spin as a spy nucleus to probe all the coupled protons and permits the determination of RDCs of negligible strengths. The technique has been demonstrated for the study of organic chiral molecules aligned in chiral liquid crystal, where additional challenge is to unravel the overlapped spectrum of enantiomers. The significant advantage of the method is demonstrated in better chiral discrimination using homonuclear RDCs as additional parameters. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In voiced speech analysis epochal information is useful in accurate estimation of pitch periods and the frequency response of the vocal tract system. Ideally, linear prediction (LP) residual should give impulses at epochs. However, there are often ambiguities in the direct use of LP residual since samples of either polarity occur around epochs. Further, since the digital inverse filter does not compensate the phase response of the vocal tract system exactly, there is an uncertainty in the estimated epoch position. In this paper we present an interpretation of LP residual by considering the effect of the following factors: 1) the shape of glottal pulses, 2) inaccurate estimation of formants and bandwidths, 3) phase angles of formants at the instants of excitation, and 4) zeros in the vocal tract system. A method for the unambiguous identification of epochs from LP residual is then presented. The accuracy of the method is tested by comparing the results with the epochs obtained from the estimated glottal pulse shapes for several vowel segments. The method is used to identify the closed glottis interval for the estimation of the true frequency response of the vocal tract system.
Resumo:
The simple two dimensional C-13-satellite J/D-resolved experiments have been proposed for the visualization of enantiomers, extraction of homo- and hetero-nuclear residual dipolar couplings and also H-1 chemical shift differences between the enantiomers in the anisotropic medium. The significant advantages of the techniques are in the determination of scalar couplings of bigger organic molecules. The scalar couplings specific to a second abundant spin such as F-19 can be selectively extracted from the severely overlapped spectrum. The methodologies are demonstrated on a chiral molecule aligned in the chiral liquid crystal medium and two different organic molecules in the isotropic solutions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
High?quality Ag?doped YBa2Cu3O7?? thin films have been grown by laser ablation on R?plane ?1102? sapphire without any buffer layer. Thin films have been found to be highly c?axis oriented with Tc=90 K, transition width ?T?1 K, and transport Jc=1.2×106 A?cm?2 at 77 K in self?field conditions. The microwave surface resistance of these films measured on patterned microstrip resonators has been found to be 530 ?? at 10 GHz at 77 K which is the lowest reported on unbuffered sapphire. Improved in?plane epitaxy and reduced reaction rate between the substrate and the film caused due to Ag in the film are believed to be responsible for this greatly improved microwave surface resistance. © 1995 American Institute of Physics.
Resumo:
We report the C-HETSERF experiment for determination of long- and short-range homo- and heteronuclear scalar couplings ((n)J(HH) and (n)J(XH), n >= 1) of organic molecules with a low sensitivity dilute heteronucleus in natural abundance. The method finds significant advantage in measurement of relative signs of long-range heteronuclear total couplings in chiral organic liquid crystal. The advantage of the method is demonstrated for the measurement of residual dipolar couplings (RDCs) in enantiomers oriented in the chiral liquid crystal with a focus to unambiguously assign R/S designation in a 2D spectrum. The alignment tensor calculated from the experimental RDCs and with the computed structures of enantiomers obtained by DFT calculations provides the size of the back-calculated RDCs. Smaller root-mean-square deviations (rmsd) between experimental and calculated RDCs indicate better agreement with the input structure and its correct designation of the stereogenic center.