419 resultados para VERTICES
Resumo:
A polygon is said to be a weak visibility polygon if every point of the polygon is visible from some point of an internal segment. In this paper we derive properties of shortest paths in weak visibility polygons and present a characterization of weak visibility polygons in terms of shortest paths between vertices. These properties lead to the following efficient algorithms: (i) an O(E) time algorithm for determining whether a simple polygon P is a weak visibility polygon and for computing a visibility chord if it exist, where E is the size of the visibility graph of P and (ii) an O(n2) time algorithm for computing the maximum hidden vertex set in an n-sided polygon weakly visible from a convex edge.
Resumo:
We propose a family of 3D versions of a smooth finite element method (Sunilkumar and Roy 2010), wherein the globally smooth shape functions are derivable through the condition of polynomial reproduction with the tetrahedral B-splines (DMS-splines) or tensor-product forms of triangular B-splines and ID NURBS bases acting as the kernel functions. While the domain decomposition is accomplished through tetrahedral or triangular prism elements, an additional requirement here is an appropriate generation of knotclouds around the element vertices or corners. The possibility of sensitive dependence of numerical solutions to the placements of knotclouds is largely arrested by enforcing the condition of polynomial reproduction whilst deriving the shape functions. Nevertheless, given the higher complexity in forming the knotclouds for tetrahedral elements especially when higher demand is placed on the order of continuity of the shape functions across inter-element boundaries, we presently emphasize an exploration of the triangular prism based formulation in the context of several benchmark problems of interest in linear solid mechanics. In the absence of a more rigorous study on the convergence analyses, the numerical exercise, reported herein, helps establish the method as one of remarkable accuracy and robust performance against numerical ill-conditioning (such as locking of different kinds) vis-a-vis the conventional FEM.
Resumo:
A hydrothermal reaction of Mn(OAc)(2)center dot 4H(2)O, Co(OAc)(2)center dot 4H(2)O and 1,2,4 benzenetricarboxylic acid at 220 degrees C for 24 h gives rise to a mixed metal MOF compound, CoMn2(C6H3(COO)(3))(2)], I. The structure is formed by the connectivity between octahedral CoO6 and trigonal prism MnO6 units connected through their vertices forming a Kagome layer, which are pillared by the trimellitate. Magnetic susceptibility studies on the MOF compound indicate a canted anti-ferromagnetic behavior, due to the large antisymmetric DM interaction between the M2+ ions (M = Mn, Co). Thermal decomposition studies indicate that the MOF compound forms a tetragonal mixed-metal spinel phase, CoMn2O4, with particle sizes in the nano regime at 400 degrees C. The particle size of the CoMn2O4 can be controlled by varying the decomposition temperature of the parent MOF compound. Magnetic studies of the CoMn2O4 compound suggests that the coercivity and the ferrimagnetic ordering temperatures are dependent on the particle size.
Resumo:
Let G be a simple, undirected, finite graph with vertex set V(G) and edge set E(C). A k-dimensional box is a Cartesian product of closed intervals a(1), b(1)] x a(2), b(2)] x ... x a(k), b(k)]. The boxicity of G, box(G) is the minimum integer k such that G can be represented as the intersection graph of k-dimensional boxes, i.e. each vertex is mapped to a k-dimensional box and two vertices are adjacent in G if and only if their corresponding boxes intersect. Let P = (S, P) be a poset where S is the ground set and P is a reflexive, anti-symmetric and transitive binary relation on S. The dimension of P, dim(P) is the minimum integer l such that P can be expressed as the intersection of t total orders. Let G(P) be the underlying comparability graph of P. It is a well-known fact that posets with the same underlying comparability graph have the same dimension. The first result of this paper links the dimension of a poset to the boxicity of its underlying comparability graph. In particular, we show that for any poset P, box(G(P))/(chi(G(P)) - 1) <= dim(P) <= 2box(G(P)), where chi(G(P)) is the chromatic number of G(P) and chi(G(P)) not equal 1. The second result of the paper relates the boxicity of a graph G with a natural partial order associated with its extended double cover, denoted as G(c). Let P-c be the natural height-2 poset associated with G(c) by making A the set of minimal elements and B the set of maximal elements. We show that box(G)/2 <= dim(P-c) <= 2box(G) + 4. These results have some immediate and significant consequences. The upper bound dim(P) <= 2box(G(P)) allows us to derive hitherto unknown upper bounds for poset dimension. In the other direction, using the already known bounds for partial order dimension we get the following: (I) The boxicity of any graph with maximum degree Delta is O(Delta log(2) Delta) which is an improvement over the best known upper bound of Delta(2) + 2. (2) There exist graphs with boxicity Omega(Delta log Delta). This disproves a conjecture that the boxicity of a graph is O(Delta). (3) There exists no polynomial-time algorithm to approximate the boxicity of a bipartite graph on n vertices with a factor of O(n(0.5-epsilon)) for any epsilon > 0, unless NP=ZPP.
Resumo:
We consider the problem of computing an approximate minimum cycle basis of an undirected non-negative edge-weighted graph G with m edges and n vertices; the extension to directed graphs is also discussed. In this problem, a {0,1} incidence vector is associated with each cycle and the vector space over F-2 generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis of G if it forms a basis for its cycle space. A cycle basis where the sum of the weights of the cycles is minimum is called a minimum cycle basis of G. Cycle bases of low weight are useful in a number of contexts, e.g. the analysis of electrical networks, structural engineering, chemistry, and surface reconstruction. Although in most such applications any cycle basis can be used, a low weight cycle basis often translates to better performance and/or numerical stability. Despite the fact that the problem can be solved exactly in polynomial time, we design approximation algorithms since the performance of the exact algorithms may be too expensive for some practical applications. We present two new algorithms to compute an approximate minimum cycle basis. For any integer k >= 1, we give (2k - 1)-approximation algorithms with expected running time O(kmn(1+2/k) + mn((1+1/k)(omega-1))) and deterministic running time O(n(3+2/k) ), respectively. Here omega is the best exponent of matrix multiplication. It is presently known that omega < 2.376. Both algorithms are o(m(omega)) for dense graphs. This is the first time that any algorithm which computes sparse cycle bases with a guarantee drops below the Theta(m(omega) ) bound. We also present a 2-approximation algorithm with expected running time O(M-omega root n log n), a linear time 2-approximation algorithm for planar graphs and an O(n(3)) time 2.42-approximation algorithm for the complete Euclidean graph in the plane.
Resumo:
Mo3O5(OH)(2)(AsO4)(2) was prepared at 100 degrees C from an aqueous solution of MoO3 containing arsenic and nitric acids. It crystallises in the monoclinic system, a = 13.024(1)Angstrom, b = 7.2974 (2) Angstrom, c = 13.281(1) Angstrom, beta = 121.124(8)degrees, Z = 4, space group C2/c. The structure was determined by Rietveld refinement from X-ray powder diffraction data. The three-dimensional structure is built up from MoO6 and MoO5OH octahedra and AsO4 tetrahedra sharing corners. The octahedra share two opposite vertices forming zigzag chains that run parallel to [10(1) over bar]. Each AsO4 tetrahedron is connected to four octahedra, two of which belong to the same chain, thus linking three chains. The resulting covalent framework is similar to that of beta VOPO4 in which one tetrahedral P site for every three is empty. The two protons are likely to be bonded to two (out of four) unshared oxygen atoms surrounding this empty site. All the Mo atoms are strongly off-centred in the octahedra; and the off-centring is disordered. The disorder is discussed in terms of Mo shifts perturbed by a disordered hydrogen bonding scheme.
Resumo:
Rainbow connection number, rc(G), of a connected graph G is the minimum number of colours needed to colour its edges, so that every pair of vertices is connected by at least one path in which no two edges are coloured the same. In this note we show that for every bridgeless graph G with radius r, rc(G) <= r(r+2). We demonstrate that this bound is the best possible for rc(G) as a function of r, not just for bridgeless graphs, but also for graphs of any stronger connectivity. It may be noted that, for a general 1-connected graph G, rc(G) can be arbitrarily larger than its radius (K_{1,n} for instance). We further show that for every bridgeless graph G with radius r and chordality (size of a largest induced cycle) k, rc(G) <= rk. Hitherto, the only reported upper bound on the rainbow connection number of bridgeless graphs is 4n/5 - 1, where n is order of the graph [Caro et al., 2008]
Resumo:
Given two independent Poisson point processes ©(1);©(2) in Rd, the AB Poisson Boolean model is the graph with points of ©(1) as vertices and with edges between any pair of points for which the intersection of balls of radius 2r centred at these points contains at least one point of ©(2). This is a generalization of the AB percolation model on discrete lattices. We show the existence of percolation for all d ¸ 2 and derive bounds for a critical intensity. We also provide a characterization for this critical intensity when d = 2. To study the connectivity problem, we consider independent Poisson point processes of intensities n and cn in the unit cube. The AB random geometric graph is de¯ned as above but with balls of radius r. We derive a weak law result for the largest nearest neighbour distance and almost sure asymptotic bounds for the connectivity threshold.
Resumo:
An axis-parallel box in $b$-dimensional space is a Cartesian product $R_1 \times R_2 \times \cdots \times R_b$ where $R_i$ (for $1 \leq i \leq b$) is a closed interval of the form $[a_i, b_i]$ on the real line. For a graph $G$, its boxicity is the minimum dimension $b$, such that $G$ is representable as the intersection graph of (axis-parallel) boxes in $b$-dimensional space. The concept of boxicity finds application in various areas of research like ecology, operation research etc. Chandran, Francis and Sivadasan gave an $O(\Delta n^2 \ln^2 n)$ randomized algorithm to construct a box representation for any graph $G$ on $n$ vertices in $\lceil (\Delta + 2)\ln n \rceil$ dimensions, where $\Delta$ is the maximum degree of the graph. They also came up with a deterministic algorithm that runs in $O(n^4 \Delta )$ time. Here, we present an $O(n^2 \Delta^2 \ln n)$ deterministic algorithm that constructs the box representation for any graph in $\lceil (\Delta + 2)\ln n \rceil$ dimensions.
Resumo:
Given an unweighted undirected or directed graph with n vertices, m edges and edge connectivity c, we present a new deterministic algorithm for edge splitting. Our algorithm splits-off any specified subset S of vertices satisfying standard conditions (even degree for the undirected case and in-degree ≥ out-degree for the directed case) while maintaining connectivity c for vertices outside S in Õ(m+nc2) time for an undirected graph and Õ(mc) time for a directed graph. This improves the current best deterministic time bounds due to Gabow [8], who splits-off a single vertex in Õ(nc2+m) time for an undirected graph and Õ(mc) time for a directed graph. Further, for appropriate ranges of n, c, |S| it improves the current best randomized bounds due to Benczúr and Karger [2], who split-off a single vertex in an undirected graph in Õ(n2) Monte Carlo time. We give two applications of our edge splitting algorithms. Our first application is a sub-quadratic (in n) algorithm to construct Edmonds' arborescences. A classical result of Edmonds [5] shows that an unweighted directed graph with c edge-disjoint paths from any particular vertex r to every other vertex has exactly c edge-disjoint arborescences rooted at r. For a c edge connected unweighted undirected graph, the same theorem holds on the digraph obtained by replacing each undirected edge by two directed edges, one in each direction. The current fastest construction of these arborescences by Gabow [7] takes Õ(n2c2) time. Our algorithm takes Õ(nc3+m) time for the undirected case and Õ(nc4+mc) time for the directed case. The second application of our splitting algorithm is a new Steiner edge connectivity algorithm for undirected graphs which matches the best known bound of Õ(nc2 + m) time due to Bhalgat et al [3]. Finally, our algorithm can also be viewed as an alternative proof for existential edge splitting theorems due to Lovász [9] and Mader [11].
Resumo:
We present two online algorithms for maintaining a topological order of a directed acyclic graph as arcs are added, and detecting a cycle when one is created. Our first algorithm takes O(m 1/2) amortized time per arc and our second algorithm takes O(n 2.5/m) amortized time per arc, where n is the number of vertices and m is the total number of arcs. For sparse graphs, our O(m 1/2) bound improves the best previous bound by a factor of logn and is tight to within a constant factor for a natural class of algorithms that includes all the existing ones. Our main insight is that the two-way search method of previous algorithms does not require an ordered search, but can be more general, allowing us to avoid the use of heaps (priority queues). Instead, the deterministic version of our algorithm uses (approximate) median-finding; the randomized version of our algorithm uses uniform random sampling. For dense graphs, our O(n 2.5/m) bound improves the best previously published bound by a factor of n 1/4 and a recent bound obtained independently of our work by a factor of logn. Our main insight is that graph search is wasteful when the graph is dense and can be avoided by searching the topological order space instead. Our algorithms extend to the maintenance of strong components, in the same asymptotic time bounds.
Resumo:
Given an undirected unweighted graph G = (V, E) and an integer k ≥ 1, we consider the problem of computing the edge connectivities of all those (s, t) vertex pairs, whose edge connectivity is at most k. We present an algorithm with expected running time Õ(m + nk3) for this problem, where |V| = n and |E| = m. Our output is a weighted tree T whose nodes are the sets V1, V2,..., V l of a partition of V, with the property that the edge connectivity in G between any two vertices s ε Vi and t ε Vj, for i ≠ j, is equal to the weight of the lightest edge on the path between Vi and Vj in T. Also, two vertices s and t belong to the same Vi for any i if and only if they have an edge connectivity greater than k. Currently, the best algorithm for this problem needs to compute all-pairs min-cuts in an O(nk) edge graph; this takes Õ(m + n5/2kmin{k1/2, n1/6}) time. Our algorithm is much faster for small values of k; in fact, it is faster whenever k is o(n5/6). Our algorithm yields the useful corollary that in Õ(m + nc3) time, where c is the size of the global min-cut, we can compute the edge connectivities of all those pairs of vertices whose edge connectivity is at most αc for some constant α. We also present an Õ(m + n) Monte Carlo algorithm for the approximate version of this problem. This algorithm is applicable to weighted graphs as well. Our algorithm, with some modifications, also solves another problem called the minimum T-cut problem. Given T ⊆ V of even cardinality, we present an Õ(m + nk3) algorithm to compute a minimum cut that splits T into two odd cardinality components, where k is the size of this cut.
Resumo:
We present a fast algorithm for computing a Gomory-Hu tree or cut tree for an unweighted undirected graph G = (V,E). The expected running time of our algorithm is Õ(mc) where |E| = m and c is the maximum u-vedge connectivity, where u,v ∈ V. When the input graph is also simple (i.e., it has no parallel edges), then the u-v edge connectivity for each pair of vertices u and v is at most n-1; so the expected running time of our algorithm for simple unweighted graphs is Õ(mn).All the algorithms currently known for constructing a Gomory-Hu tree [8,9] use n-1 minimum s-t cut (i.e., max flow) subroutines. This in conjunction with the current fastest Õ(n20/9) max flow algorithm due to Karger and Levine [11] yields the current best running time of Õ(n20/9n) for Gomory-Hu tree construction on simpleunweighted graphs with m edges and n vertices. Thus we present the first Õ(mn) algorithm for constructing a Gomory-Hu tree for simple unweighted graphs.We do not use a max flow subroutine here; we present an efficient tree packing algorithm for computing Steiner edge connectivity and use this algorithm as our main subroutine. The advantage in using a tree packing algorithm for constructing a Gomory-Hu tree is that the work done in computing a minimum Steiner cut for a Steiner set S ⊆ V can be reused for computing a minimum Steiner cut for certain Steiner sets S' ⊆ S.
Resumo:
Abstract. Let G = (V,E) be a weighted undirected graph, with non-negative edge weights. We consider the problem of efficiently computing approximate distances between all pairs of vertices in G. While many efficient algorithms are known for this problem in unweighted graphs, not many results are known for this problem in weighted graphs. Zwick [14] showed that for any fixed ε> 0, stretch 1 1 + ε distances between all pairs of vertices in a weighted directed graph on n vertices can be computed in Õ(n ω) time, where ω < 2.376 is the exponent of matrix multiplication and n is the number of vertices. It is known that finding distances of stretch less than 2 between all pairs of vertices in G is at least as hard as Boolean matrix multiplication of two n×n matrices. It is also known that all-pairs stretch 3 distances can be computed in Õ(n 2) time and all-pairs stretch 7/3 distances can be computed in Õ(n 7/3) time. Here we consider efficient algorithms for the problem of computing all-pairs stretch (2+ε) distances in G, for any 0 < ε < 1. We show that all pairs stretch (2 + ε) distances for any fixed ε> 0 in G can be computed in expected time O(n 9/4 logn). This algorithm uses a fast rectangular matrix multiplication subroutine. We also present a combinatorial algorithm (that is, it does not use fast matrix multiplication) with expected running time O(n 9/4) for computing all-pairs stretch 5/2 distances in G. 1
Resumo:
A k-dimensional box is a Cartesian product R(1)x...xR(k) where each R(i) is a closed interval on the real line. The boxicity of a graph G, denoted as box(G), is the minimum integer k such that G can be represented as the intersection graph of a collection of k-dimensional boxes. That is, two vertices are adjacent if and only if their corresponding boxes intersect. A circular arc graph is a graph that can be represented as the intersection graph of arcs on a circle. We show that if G is a circular arc graph which admits a circular arc representation in which no arc has length at least pi(alpha-1/alpha) for some alpha is an element of N(>= 2), then box(G) <= alpha (Here the arcs are considered with respect to a unit circle). From this result we show that if G has maximum degree Delta < [n(alpha-1)/2 alpha] for some alpha is an element of N(>= 2), then box(G) <= alpha. We also demonstrate a graph having box(G) > alpha but with Delta = n (alpha-1)/2 alpha + n/2 alpha(alpha+1) + (alpha+2). For a proper circular arc graph G, we show that if Delta < [n(alpha-1)/alpha] for some alpha is an element of N(>= 2), then box(G) <= alpha. Let r be the cardinality of the minimum overlap set, i.e. the minimum number of arcs passing through any point on the circle, with respect to some circular arc representation of G. We show that for any circular arc graph G, box(G) <= r + 1 and this bound is tight. We show that if G admits a circular arc representation in which no family of k <= 3 arcs covers the circle, then box(G) <= 3 and if G admits a circular arc representation in which no family of k <= 4 arcs covers the circle, then box(G) <= 2. We also show that both these bounds are tight.