944 resultados para VEGETABLE OIL
Resumo:
Enquadrado num contexto cada vez mais marcado pela necessidade imperiosa de adoção e desenvolvimento de práticas ambientais e energeticamente sustentáveis, este trabalho visa contribuir para a caracterização e otimização do consumo de energia na produção de biodiesel. O biodiesel pode ser encarado como uma boa resposta aos graves problemas que os combustíveis fósseis estão a provocar nas sociedades modernas, pois é uma fonte de energia biodegradável, não-tóxica e sintetizada a partir de várias matérias-primas. Porém, o elevado custo de produção, como consequência do elevado preço das matérias-primas, constitui o maior problema para a sua implementação e comercialização a grande escala. A produção de biodiesel é, em sua quase totalidade, conduzida por via de reação de transesterificação, usando óleo vegetal e álcool como matérias-primas. O objetivo geral deste trabalho é otimizar energeticamente um processo de produção de biodiesel, via catálise homogênea alcalina (BCHA). Para alcançar esse objetivo, um fluxograma típico de produção foi construído e analisado, tanto do ponto de vista energético como econômico. Posteriormente oportunidades de otimização do processo foram identificadas, no sentido de reduzir o consumo de utilidades, impacto ambiental e aumentar a rentabilidade econômica. A construção do processo, a caracterização da alimentação, os critérios de operacionalidade, a obtenção de resultados e demais fatores foram efetuados com auxílio de um software de simulação Aspen Plus versão 20.0 criado pela Aspen Technology products. Os resultados do trabalho revelaram que o processo BCHA produz uma corrente com 99,9 % em biodiesel, obedecendo às normas internacionais em vigor. Na parte energética, o processo BCHA base necessitou de 21.405,1 kW em utilidades quentes e 14.886,3 kW em utilidades frias. A integração energética do processo BCHA, segundo a metodologia pinch, permitiu uma redução das necessidades quentes para 10.752,3 kW (redução de 50 %) e frias para 4.233,5 kW (redução de 72 %). A temperatura no ponto de estrangulamento (PE) foi de 157,7 ºC nas correntes quentes e 147,7 ºC nas correntes frias. Em termos econômicos, o custo total é reduzido em 35% com a integração energética proposta. Essa diminuição, deve-se sobretudo à redução do custo operacional, onde as necessidades de vapor de muita alta pressão (VMAP), vapor de alta pressão (VAP) e água de resfriamento (AR) apresentaram quebras de 2 %, 92 % e 71 %, respectivamente. Como conclusão final, salienta-se que a integração do processo BCHA estudado é energética e economicamente viável.
Resumo:
La producció de biodièsel a partir d'olis de cuina utilitzats, amb l'objectiu de transformar un residu en un producte amb valor comercial i ambiental, és més net que els combustibles fòssils i contribueix a disminuir el gran consum de petroli que estem fent. En una primera part teòrica s’ha realitzat un treball de recerca d' informació del biodièsel per saber si és un bon combustible i si podria ser un possible substitut dels combustibles fòssils. En quant a la part pràctica l'objectiu principal ha estat fabricar el biodièsel . Les matèries primeres són oli de gira-sol i oli de cuina utilitzat, per tal de comparar les seves qualitats. S’ha arribat a la conclusió que presenten característiques molt semblants. Després de fer les anàlisis físico-químics de qualitat vam fer una mescla dels dos biodièsels fabricats, i el vam provar en un motor Dièsel per comprovar si funciona correctament i fer una comparació dels gasos emesos pel nostre combustible amb els emesos pel gasoil comercial. El resultat va ser molt positiu ja que el motor va funcionar correctament, i la comparació de gasos va sortir tal i com esperàvem ja que les quantitats de diòxid i monòxid de carboni emeses eren menors que en el gasoil.
Resumo:
It is likely that during this century polymers based on renewable materials will gradually replace industrial polymers based on petrochemicals. This chapter gives an overview of the current status of research on plant biopolymers that are used as a material in non-food applications. We cover technical and scientific bottlenecks in the production of novel or improved materials, and the potential of using transgenic or alternative crops in overcoming these bottlenecks. Four classes of biopolymers will be discussed: starch, proteins, natural rubber, and poly-beta-hydroxyalkanoates. Renewable polymers produced by chemical polymerization of monomers derived from sugars, vegetable oil, or proteins, are not considered here.
Resumo:
Mauritia vinifera (buriti) is a palm tree that grows wild in different areas of Brazil, particularly in the Amazonian region. The buriti oil is rich in carotenoids, especially in β-carotene. The growing interest in other natural sources of β-carotene has stimulated the industrial use of buriti as a raw material for pulp oil extraction. Most processes are based on the conventional technologies, involving drying and pressing the pulp for oil recovery and further separation of carotenoids in a liquid phase using organics solvents. In the present work, the ethanol-based process was evaluated for simultaneous carotenoids recovering and fractionating from buriti pulp. The raw material and ethanol, 1:4 ratio, were placed in an erlenmeyer flask and maintained at 30rpm for 1 hour in a temperature-controlled bath at 65ºC. The mixture was filtered under vacuum and cooling at 10ºC to allow for the separation of the solvent in two phases. Carotenoids composition, determined by HPLC, has indicated a β-carotene concentration about 12 times greater in the lower phase than in the upper phase. The profile of the carotenoids in the denser phase is quite similar to that of raw buriti oil, and the concentration of total carotenoids is 40% higher than that of the original raw oil, making the ethanol-based process particularly attractive for industrial applications.
Resumo:
This article describes a novel approach to the separation of fatty acids ranging from 8 to 20 carbons using capillary electrophoresis with contactless conductivity detection. Complete separation of nine linear chain fatty acids (from C8:0 to C20:0) was achieved in 15 min under normal polarity operation. Limits of detection ranged from 35 to 319 µmol L-1 for C20:0 to C8:0, respectively. The optimized running electrolyte composition was 5.0 mmol L-1 phosphate buffer at pH 7, 4.0 mmol L-1 dimethyl-b-cyclodextrin, 2.0 mmol L-1 trimethyl-b-cyclodextrin, acetonitrile 50% (v/v), and methanol 20% (v/v). The applicability of the separation system was demonstrated by the analysis of coconut vegetable oil.
Resumo:
The selective ion monitoring acquisition mode in mass spectrometry was applied to identify, in the diesel complex matrix, the raw materials (vegetable oil and alcohol) that originate biodiesel. Biodiesel samples obtained from babassu, castor, palm and soybean vegetable oils and pure fatty acid methyl and ethyl esters were used to develop this method, using specific fragments in mass spectrometry and the "window system" in gas chromatography. The commercial Brazilian B2 samples were found to be produced with soybean oil, transesterified with methanol.
Resumo:
Total spectrofluorimetry associated to Principal Components Analysis (PCA) were used to classify into different groups the samples of diesel oil, biodiesel, vegetal oil and residual oil, as well as, to identify addition of non-transesterified residual vegetable oil, instead of biodiesel, to the diesel oil. Using this method, the samples of diesel oil, mixtures of biodiesel in diesel and mixtures of residual oil in diesel were separated into well-defined groups.
Resumo:
In this study, hierarchical cluster analysis (HCA) and principal component analysis (PCA) were used to classify blends produced from diesel S500 and different kinds of biodiesel produced by the TDSP methodology. The different kinds of biodiesel studied in this work were produced from three raw materials: soybean oil, waste cooking oil and hydrogenated vegetable oil. Methylic and ethylic routes were employed for the production of biodiesel. HCA and PCA were performed on the data from attenuated total reflectance Fourier transform infrared spectroscopy, showing the separation of the blends into groups according to biodiesel content present in the blends and to the kind of biodiesel used to form the mixtures.
Resumo:
The seed oils from four plants (Scheelea phalerata, Butia capitata, Syagrus romanzoffiana, Terminalia cattapa) found in Mato Grosso do Sul were extracted at good yields. Alkaline transesterification of these seed oils to esters using methanol and ethanol was studied and also produced good yields. Oleic acid (30.5/32.3%), lauric acid (30.7/32.9%) methyl and ethyl esters, were the main components of transesterification of the oils from Scheelea phalerata and Syagrus romanzoffiana. Lauric acid (42.2%), capric acid (15.9%) and caprylic acid (14.6%) methyl and ethyl esters were the main ester components of transesterification of the oil from Butia capitata. Oleic acid (37.8%), palmitic acid (33.5%) and linoleic acid (22.6%) methyl and ethyl esters were the main components of transesterification of oil from Terminalia catappa. Based on differential scanning calorimetry (DSC) studies, the first crystallization peak temperature of esters was observed. Esters derived from oils of the family Arecaceae (Scheelea phalerata, Butia capitata, Syagrus romanzoffiana) showed the lowest points of crystallization, despite having high levels of saturated fat. Esters of Terminalia cattapa oil, rich in unsaturated fat, showed the highest crystallization temperature. This difference in behavior is probably related to the high concentration of esters derived from lauric acid and palmitic acid.
Resumo:
In this study, we developed a method for the visual detection of biodiesel in petrodiesel-biodiesel (BX) blends through the aminolysis of the methyl or ethyl esters of fatty acids that are found in biodiesel and that are absent from diesel and vegetable oils. This method is based on three reactional stages, which produce a dark red and easily visualized complex in the presence of biodiesel. In the absence of biodiesel, there is no dark red coloring, whereas in the presence of diesel or vegetable oil, there is a light red to yellow coloring. This simple, practical, inexpensive, and effective procedure may be applied by petrol stations to guarantee to consumers and resellers the presence of biodiesel in diesel blends, regardless of the BX blend's initial coloring or of the sulfur found in the diesel. In short, it ensures a safe fuel tank fill-up with BX blend.
Resumo:
The reduction of pesticide spraying drift is still one of the major challenges in Brazilian agriculture. The aim of this study was to evaluate the potential of different adjuvant products, such as surfactants, drift retardants, mineral oil and vegetable oil for reducing drift in agricultural spraying. The experiment consisted of quantifying drift of sprayings of 18 adjuvants dissolved in water under controlled conditions in a wind tunnel. Tests were performed in triplicates with spraying nozzles type Teejet XR8003 VK, pressure of 200kPa and medium drops. Solutions sprayed were marked with Brilliant Blue dye at 0.6% (m v-1). The drift was collected using polyethylene strips transversally fixed along the tunnel at different distances from the nozzle and different heights from the bottom part of the tunnel. Drift deposits were evaluated by spectrophotometry in order to quantify deposits. The adjuvants from chemical groups of mineral oil and drift retardant resulted in lower values of drift in comparison with surfactants and water. The results obtained in laboratory show that the selection of appropriate class and concentration of adjuvants can significantly decrease the risk of drift in agricultural spraying. However, the best results obtained in laboratory should be validated with pesticide under field conditions in the future.
Resumo:
The air included in droplets generated by spray nozzles directly int0erferes in transport, deposition and retention of the droplets after its impact on the target. The objective of this study was to analyze the interference of adjuvants in the amount of air included in droplets generated by spray nozzles. The treatments were composed by four spray solutions containing mineral oil, vegetable oil, surfactant and water, and three spray nozzles, two air induction type and one pre-orifice. The air included was calculated by the difference between the volume of spray mix (air plus liquid) and only the liquid, which was made by means of sprayed samples captured in a funnel and collected in a graduated cylinder. The surface tension was estimated by the gravimetric method using a precision scale and a graduated pipette. The surfactant provided the largest percentage of air included in the spray. For the surface tension, the mineral oil and the surfactant had the lowest values. It was concluded that the use of adjuvants had a direct influence on the percentage of air included. In addition, products with greater ability to reduce surface tension and to form homogeneous solutions provided the increase in the percentage of air included in the droplet.
Resumo:
The effect of five adjuvants (non-ionic surfactant, paraffinic oil, vegetable oil, mixture of fatty acids methyl esters plus surfactant blend, and organosilicone) on diquat efficacy was assessed on poverty brome, sterile oat, and Italian ryegrass in field and pot experiments. All tank mixtures with diquat increased diquat efficacy from 50-54% to 77-98% as for fresh weight reduction, indicating significant enhancement of diquat efficacy on grasses. The increased efficacy was most likely attributed to better droplet retention and diffusion on the leaf surfaces. When combined with non-ionic surfactant, diquat showed slightly more rapid control of grass weeds (i.e. symptoms were visible within a few hours after application).
Resumo:
Tämän diplomityön tavoitteena on ollut selvittää opetuskäyttöön tulevan biodiesellaitteis-ton hankintaprosessi sekä toteuttaa laitteiston hankinta ja käyttöönotto. Ensiksi on pereh-dytty Euroopan Unionin ja Suomen kansallisiin uusiutuvien polttoaineiden käytön tavoit-teisiin. Toiseksi on perehdytty julkisten hankintojen hankintaprosessiin ja koulutuskun-tayhtymän hankintamenettelyyn. Tarjousmenettelyn päätteeksi on valittu vaihtoesteröinti-menetelmään perustuva kasvi- tai kalaöljyä raaka-aineena käyttävä biodiesellaitteisto, jonka toimintaan ja tuotantoprosessiin on perehdytty opetuksellisesta näkökulmasta. Työssä on kiinnitetty erityistä huomioita työturvallisuuteen ja biodiesellaitteiston käyttöturvalli-suuteen.
Resumo:
Rats fed a high-fructose diet represent an animal model for insulin resistance and hypertension. We recently showed that a high-fructose diet containing vegetable oil but a normal sodium/potassium ratio induced mild insulin resistance with decreased insulin receptor substrate-1 tyrosine phosphorylation in the liver and muscle of normal rats. In the present study, we examined the mean blood pressure, serum lipid levels and insulin sensitivity by estimating in vivo insulin activity using the 15-min intravenous insulin tolerance test (ITT, 0.5 ml of 6 µg insulin, iv) followed by calculation of the rate constant for plasma glucose disappearance (Kitt) in male Wistar-Hannover rats (110-130 g) randomly divided into four diet groups: control, 1:3 sodium/potassium ratio (R Na:K) diet (C 1:3 R Na:K); control, 1:1 sodium/potassium ratio diet (CNa 1:1 R Na:K); high-fructose, 1:3 sodium/potassium ratio diet (F 1:3 R Na:K), and high-fructose, 1:1 sodium/potassium ratio diet (FNa 1:1 R Na:K) for 28 days. The change in R Na:K for the control and high-fructose diets had no effect on insulin sensitivity measured by ITT. In contrast, the 1:1 R Na:K increased blood pressure in rats receiving the control and high-fructose diets from 117 ± 3 and 118 ± 3 mmHg to 141 ± 4 and 132 ± 4 mmHg (P<0.05), respectively. Triacylglycerol levels were higher in both groups treated with a high-fructose diet when compared to controls (C 1:3 R Na:K: 1.2 ± 0.1 mmol/l vs F 1:3 R Na:K: 2.3 ± 0.4 mmol/l and CNa 1:1 R Na:K: 1.2 ± 0.2 mmol/l vs FNa 1:1 R Na:K: 2.6 ± 0.4 mmol/l, P<0.05). These data suggest that fructose alone does not induce hyperinsulinemia or hypertension in rats fed a normal R Na:K diet, whereas an elevation of sodium in the diet may contribute to the elevated blood pressure in this animal model.