133 resultados para VAGAL


Relevância:

10.00% 10.00%

Publicador:

Resumo:

It seems that a dual location for vagal preganglionic neurones (VPNs) has important functional correlates in all vertebrates. This may be particularly the case with the central control exerted over the heart by cardiac VPNs (CVPNs). About 30 % of VPNs but up to 70 % of CVPNs are in the nucleus ambiguus (NA) of mammals. There is a similar proportional representation of VPNs between the major vagal nuclei in amphibians and turtles but in fish and crocodilians; the proportion of VPNs in the NA is closer to 10% and in some lizards and birds it is about 5%. However, the CVPNs are distributed unequally between these nuclei so that 45 % of the CVPNs are located in the NA of the dogfish, and about 30% in the NA of Xenopus and the duck. This topographical separation of CVPNs seems to be of importance in the central control of the heart. Cells in one location may show respiration-related activity (e.g those in the dorsal vagal nucleus (DVN) of dogfish and in the NA of mammals) while cells in the other locations do not. Their different activities and separate functions will be determined by their different afferent inputs from the periphery or from elsewhere in the CNS, which in turn will relate to their central topography. Thus, CVPNs in the NA of mammals receive inhibitory inputs from neighbouring inspiratory neurones, causing respiratory sinus arrythmia (RSA), and the CVPNs in the DVN of the dogfish may generate cardiorespiratory synchrony (CRS).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fish control the relative flow rates of water and blood over the gills in order to optimise respiratory gas exchange. As both flows are markedly pulsatile, close beat-to-beat relationships can be predicted. Cardiorespiratory interactions in fish are controlled primarily by activity in the parasympathetic nervous system that has its origin in cardiac vagal. preganglionic neurons. Recordings of efferent activity in the cardiac vagus include units firing in respiration-related bursts. Bursts of electrical stimuli delivered peripherally to the cardiac vagus or centrally to respiratory branches of cranial, nerves can recruit the heart over a range of frequencies. So, phasic, efferent activity in cardiac vagi, that in the intact fish are respiration-related, can cause heart rate to be modulated by the respiratory rhythm. In elasmobranch fishes this phasic activity seems to arise primarily from central feed-forward interactions with respiratory motor neurones that have overlapping distributions with cardiac neurons in the brainstem. In teleost fish, they arise from increased levels of efferent vagal activity arising from reflex stimulation of chemoreceptors and mechanoreceptors in the orobranchial, cavity. However, these differences are largely a matter of emphasis as both groups show elements of feed-forward and feed-back control of cardiorespiratory interactions. (C) 2008 Elsevier GmbH. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. 1. The mechanisms behind cardiac control were investigated in the South American lungfish, Lepidosiren paradoxa, using fish with chronically implanted cannulae and electromagnetic flow probes. In addition, a preliminary study was made of the cardiovascular events associated with air breathing. 2. 2. The study suggests that the heart of Lepidosiren is controlled by cholinergic vagal fibres which, in some animals, exert a tonic influence in the resting fish. Cyclic changes in heart rate in association with air breaths is due to modulation of this cholinergic tonus. 3. 3. In addition to the variable cholinergic tonus, there appears to be a relatively stable adrenergic tonus on the heart, which causes an elevated heart rate. The adrenergic tonus is likely to be due to local release of catecholamines from endogenous chromaffin cells within the atrium. 4. 4. Preliminary results suggest that pulmonary arterial flow increases by about 50% immediately following an air breath. The mechanism behind this increase probably involves both an elevation of the heart rate and a redistribution of blood flow into the pulmonary circuit. © 1989.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review aims to report the major control mechanisms of protein and peptides digestion of special interest in human patients. Regarding protein assimilation its digestive process begins at the stomach with some not so indispensable actions comparatively to those of duodenal/jejunal lumen. However even the intestine processes are partially under gastric secretion control. Proteolytic enzyme activities are related to protein structure and amino acid constituents, tertiary and quartenary structures need HCl - denaturation prior to enzymatic hydrolysis. Thereafter the exopeptidases are guided by either NH 2 (aminopeptidases) or COOH (carboxypeptidases) terminals of the molecule while endopeptidases are oriented by the specific amino acids constituents of the peptide. Both dietary and luminal secreted proteins and polypeptides undergo to either limited or complete proteolysis resulting basic or neutral free-amino acids (40%) or dioctapeptides. The brush border peptidases continue to degrade oligopeptide to di-tripeptides and neutral free-amino acids. Some peptides are uptaked by the enterocytes whose cytosolic peptidases complete the hydrolysis. Hence the digestive products flowing in the portal vein are mainly free-amino acids from either luminal or cytosolic hydrolysis and some di-tripeptides intactly absorbed. Both mechanical and chemical processes of digestion are under neural (vagal), neuroendocrinal(acetilcholine),endocrinal(gastrin, secretin and cholecystokinin) or paracrinal (histamine) controls. The gastric phase (hydrochloric acid and pepsinogen secretions) is activated by gastrin, histamine and acetilcholine which respond to both dietary-amino acids (tryptophan and phenylalanine) and mechanic distention of stomach. The pancreatic secretion is stimulated by either cephalic or gastric phases and has influence on the intestinal phase of digestion. The intestinal types of cells S and I release secretin and cholecystokinin respectively in response of acid quimo (cells S) or amino acids and peptides (cells I) in the lumen. Secretin stimulates the releasing of water, bicarbonate and enteropeptidases whereas cholecystokinin acts on pancreatic enzymes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neuromodulatory effect of nitric oxide (NO) on glutamatergic transmission within the NTS related to cardiovascular regulation has been widely investigated. Activation of glutamatergic receptors in the NTS stimulates the production and release of NO and other nitrosyl substances with neurotransmitter/neuromodulator properties. The presence of NOS, including the protein nNOS and its mRNA in vagal afferent terminals in the NTS and nodose ganglion cells suggest that NO can act on glutamatergic transmission. We previously reported that iontophoresis of L-NAME on NTS neurons receiving vagal afferent inputs significantly decreased the number of action potentials evoked by iontophoretic application of AMPA. In addition, iontophoresis of the NO donor papaNONOate enhanced spontaneous discharge and the number of action potentials elicited by AMPA, suggesting that NO could be facilitating AMPA-mediated neuronal transmission within the NTS. Furthermore, the changes in renal sympathetic discharge during activation of baroreceptors and cardiopulmonary receptors involve activation of AMPA and NMDA receptors in the NTS and these responses are attenuated by microinjection of L-NAME in the NTS of conscious and anesthetized rats. Cardiovascular responses elicited by application of NO in the NTS are closely similar to those obtained after activation of vagal afferent inputs, and L-glutamate is the main neurotransmitter of vagal afferent fibers. In this review we discuss the possible neuromodulatory mechanisms of central produced/released NO on glutamatergic transmission within the NTS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: to investigate if combining VT to DGR through the pylorus can modulate the biological behavior of PL induced by DGR and to verify if TV alone can induce morphologic lesions in the gastric mucosa. Methods: 62 male Wistar rats were assigned to four groups: 1 - Control (CT) gastrotomy; 2 - Troncular Vagotomy (TV) plus gastrotomy; 3 - Duodenogastric reflux through the pylorus (R) and 4 - Troncular vagotomy plus DGR (RTV). The animals were killed at the 54 week of the experiment. DGR was obtained by anastomosing a proximal jejunal loop to the anterior gastric wall. TV was performed through isolation and division of the vagal trunks. Gastrotomy consisted of 1 cm incision at the anterior gastric wall. PL were analyzed gross and histologically in the antral mucosa, at the gastrojejunal stoma and at the squamous portion of the gastric mucosa. Results: Groups R and RTV developed exophytic lesions in the antral mucosa (R=90.9%; RTV=100%) and at the gastrojejunal stoma (R=54.54%; RTV=63.63%). Histologically they consisted of proliferative benign lesions, without cellular atypias, diagnosed as adenomatous hyperplasia. Both groups exposed to DGR presented squamous hyperplasia at the squamous portion of the gastric mucosa (R= 54.5%; RTV= 45.4%). TV, alone, did not induce gross or histological alterations in the gastric mucosa. TV did note change the morphologic pattern of the proliferative lesions induced by DGR. Conclusions: DGR induces the development of PL in the pyloric mucosa and at the gastrojejunal stoma. TV does not change the morphologic pattern of the proliferative lesions induced by DGR. TV alone is not able to induce morphologic lesions in the gastric mucosa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The literature has already demonstrated that auditory stimulation with music influences the cardiovascular system. In this study, we performed a literature review in order to investigate the relationship between auditory mechanisms and cardiac autonomic regulation. The selected studies indicated that there is a strong correlation between noise intensity and vagal-sympathetic balance. Also, it was reported that music therapy improved heart rate variability in anthracycline-treated breast cancer patients. It was hypothesized that dopamine release in the striatal system induced by pleasure songs are involved in the cardiac autonomic regulation. Further studies are necessary to add new elements in the literature to improve new therapies to treat cardiovascular disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contextualização:Ações concêntricas apresentam maior estresse cardiovascular quando comparadas às excêntricas. Entretanto, não se sabe a influência desses tipos de ações no comportamento da modulação autonômica cardíaca durante o processo de recuperação pós-esforço.Objetivo:Comparar o efeito de um treinamento resistido para o grupo extensor do joelho realizado com ênfase concêntrica vs excêntrica sobre a força muscular e a recuperação pós-exercício considerando índices de variabilidade de frequência cardíaca (VFC) em jovens saudáveis.Método:Cento e cinco homens, com idades entre 18 e 30 anos, foram randomizados em quatro grupos: controle concêntrico (CCONC), controle excêntrico (CEXC), treinamento concêntrico (TCONC) e treinamento excêntrico (TEXC). Os grupos CCONC e CEXC realizaram uma sessão de exercício reduzido (ER) para o grupo extensor do joelho [três séries de uma repetição a 100% de uma repetição máxima (1RM)], e os grupos TCONC e TEXC realizaram dez sessões de treinamento. A VFC foi analisada no momento basal e na recuperação após as sessões (T1, T2, T3 e T4).Resultados:Observou-se aumento da força muscular para o grupo TEXC. Em relação à modulação autonômica cardíaca, observou-se, em comparação ao momento basal, aumento dos índices SDNN e SD2 no momento T1 nos grupos CCONC e CEXC e aumento dos índices RMSSD, SD1 e AF (ms2) nos momentos T1, T2 e T4 no grupo TEXC.Conclusões:Conclui-se que o treinamento resistido realizado com ênfase em contrações excêntricas promoveu ganho de força e aumento da modulação vagal cardíaca durante o processo de recuperação em relação à condição basal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE:To evaluate morphological changes of the gastric stump and not resected stomach mucosa after the completion of truncal vagotomy.METHODS:Eighty male Wistar rats were divided into four groups: CT, TV, RY and RYTV. In CT group, abdominal viscera were manipulated and the abdominal cavity was closed, in TV vagal trunks were isolated and sectioned, in RY a partial Roux-en-Y gastrectomy was performed and in RYTV the vagal trunks were sectioned and a partial Roux-en-Y gastrectomy was performed. At the 54th week after surgery, the rats were euthanized. The findings were submitted to histological analyses.RESULTS:None macroscopic or histological alterations in groups TV and CT was observed. Specimens from RY and RYTV groups did not show alterations in the gastric stump mucosa. At the jejunal side of the gastroenterostomy we found shallow ulcerative lesions always single, well-defined and with variable diameter 3 to 6 mm, six times in the RY group and none in the RYTV group (RY>RYTV, p=0.008). Neoplastic or preneoplastic lesions were not diagnosed in all groups.CONCLUSION:Truncal vagotomy is a safe and non-carcinogenic method in not resected and partially resected stomach.