871 resultados para User-based collaborative filtering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tag recommendation is a specific recommendation task for recommending metadata (tag) for a web resource (item) during user annotation process. In this context, sparsity problem refers to situation where tags need to be produced for items with few annotations or for user who tags few items. Most of the state of the art approaches in tag recommendation are rarely evaluated or perform poorly under this situation. This paper presents a combined method for mitigating sparsity problem in tag recommendation by mainly expanding and ranking candidate tags based on similar items’ tags and existing tag ontology. We evaluated the approach on two public social bookmarking datasets. The experiment results show better accuracy for recommendation in sparsity situation over several state of the art methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Online dating websites enable a specific form of social networking and their efficiency can be increased by supporting proactive recommendations based on participants' preferences with the use of data mining. This research develops two-way recommendation methods for people-to-people recommendation for large online social networks such as online dating networks. This research discovers the characteristics of the online dating networks and utilises these characteristics in developing efficient people-to-people recommendation methods. Methods developed support improved recommendation accuracy, can handle data sparsity that often comes with large data sets and are scalable for handling online networks with a large number of users.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Twitter is a very popular social network website that allows users to publish short posts called tweets. Users in Twitter can follow other users, called followees. A user can see the posts of his followees on his Twitter profile home page. An information overload problem arose, with the increase of the number of followees, related to the number of tweets available in the user page. Twitter, similar to other social network websites, attempts to elevate the tweets the user is expected to be interested in to increase overall user engagement. However, Twitter still uses the chronological order to rank the tweets. The tweets ranking problem was addressed in many current researches. A sub-problem of this problem is to rank the tweets for a single followee. In this paper we represent the tweets using several features and then we propose to use a weighted version of the famous voting system Borda-Count (BC) to combine several ranked lists into one. A gradient descent method and collaborative filtering method are employed to learn the optimal weights. We also employ the Baldwin voting system for blending features (or predictors). Finally we use the greedy feature selection algorithm to select the best combination of features to ensure the best results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Australia is a leading user of collaborative procurement methods, which are used to deliver large and complex infrastructure projects. Project alliances, Early Contractor Involvement (ECI), and partnering are typical examples of collaborative procurement models. In order to increase procurement effectiveness and value for money (VfM), clients have adopted various learning strategies for new contract development. However client learning strategies and behaviours have not been systematically analysed before. Therefore, the current paper undertakes a literature review addressing the research question “How can client learning capabilities be effectively understood?”. From the resource-based and dynamic capability perspectives, this paper proposes that the collaborative learning capability (CLC) of clients drives procurement model evolution. Learning routines underpinning CLC carry out exploratory, transformative and exploitative learning phases associated with collaborative project delivery. This learning improves operating routines, and ultimately performance. The conceptualization of CLC and the three sequential learning phases is used to analyse the evidence in the construction management literature. The main contribution of this study is the presentation of a theoretical foundation for future empirical studies to unveil effective learning strategies, which help clients to improve the performance of collaborative projects in the dynamic infrastructure market.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate methods for recommending multimedia items suitable for an online multimedia sharing community and introduce a novel algorithm called UserRank for ranking multimedia items based on link analysis. We also take the initiative of applying EigenRumor from the domain of blogosphere to multimedia. Furthermore, we present a strategy for making personalized recommendation that combines UserRank with collaborative filtering. We evaluate our method with an informal user study and show that results obtained are promising.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our study concerns an important current problem, that of diffusion of information in social networks. This problem has received significant attention from the Internet research community in the recent times, driven by many potential applications such as viral marketing and sales promotions. In this paper, we focus on the target set selection problem, which involves discovering a small subset of influential players in a given social network, to perform a certain task of information diffusion. The target set selection problem manifests in two forms: 1) top-k nodes problem and 2) lambda-coverage problem. In the top-k nodes problem, we are required to find a set of k key nodes that would maximize the number of nodes being influenced in the network. The lambda-coverage problem is concerned with finding a set of k key nodes having minimal size that can influence a given percentage lambda of the nodes in the entire network. We propose a new way of solving these problems using the concept of Shapley value which is a well known solution concept in cooperative game theory. Our approach leads to algorithms which we call the ShaPley value-based Influential Nodes (SPINs) algorithms for solving the top-k nodes problem and the lambda-coverage problem. We compare the performance of the proposed SPIN algorithms with well known algorithms in the literature. Through extensive experimentation on four synthetically generated random graphs and six real-world data sets (Celegans, Jazz, NIPS coauthorship data set, Netscience data set, High-Energy Physics data set, and Political Books data set), we show that the proposed SPIN approach is more powerful and computationally efficient. Note to Practitioners-In recent times, social networks have received a high level of attention due to their proven ability in improving the performance of web search, recommendations in collaborative filtering systems, spreading a technology in the market using viral marketing techniques, etc. It is well known that the interpersonal relationships (or ties or links) between individuals cause change or improvement in the social system because the decisions made by individuals are influenced heavily by the behavior of their neighbors. An interesting and key problem in social networks is to discover the most influential nodes in the social network which can influence other nodes in the social network in a strong and deep way. This problem is called the target set selection problem and has two variants: 1) the top-k nodes problem, where we are required to identify a set of k influential nodes that maximize the number of nodes being influenced in the network and 2) the lambda-coverage problem which involves finding a set of influential nodes having minimum size that can influence a given percentage lambda of the nodes in the entire network. There are many existing algorithms in the literature for solving these problems. In this paper, we propose a new algorithm which is based on a novel interpretation of information diffusion in a social network as a cooperative game. Using this analogy, we develop an algorithm based on the Shapley value of the underlying cooperative game. The proposed algorithm outperforms the existing algorithms in terms of generality or computational complexity or both. Our results are validated through extensive experimentation on both synthetically generated and real-world data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ce mémoire est composé de trois articles qui s’unissent sous le thème de la recommandation musicale à grande échelle. Nous présentons d’abord une méthode pour effectuer des recommandations musicales en récoltant des étiquettes (tags) décrivant les items et en utilisant cette aura textuelle pour déterminer leur similarité. En plus d’effectuer des recommandations qui sont transparentes et personnalisables, notre méthode, basée sur le contenu, n’est pas victime des problèmes dont souffrent les systèmes de filtrage collaboratif, comme le problème du démarrage à froid (cold start problem). Nous présentons ensuite un algorithme d’apprentissage automatique qui applique des étiquettes à des chansons à partir d’attributs extraits de leur fichier audio. L’ensemble de données que nous utilisons est construit à partir d’une très grande quantité de données sociales provenant du site Last.fm. Nous présentons finalement un algorithme de génération automatique de liste d’écoute personnalisable qui apprend un espace de similarité musical à partir d’attributs audio extraits de chansons jouées dans des listes d’écoute de stations de radio commerciale. En plus d’utiliser cet espace de similarité, notre système prend aussi en compte un nuage d’étiquettes que l’utilisateur est en mesure de manipuler, ce qui lui permet de décrire de manière abstraite la sorte de musique qu’il désire écouter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pendant la dernière décennie nous avons vu une transformation incroyable du monde de la musique qui est passé des cassettes et disques compacts à la musique numérique en ligne. Avec l'explosion de la musique numérique, nous avons besoin de systèmes de recommandation de musique pour choisir les chansons susceptibles d’être appréciés à partir de ces énormes bases de données en ligne ou personnelles. Actuellement, la plupart des systèmes de recommandation de musique utilisent l’algorithme de filtrage collaboratif ou celui du filtrage à base de contenu. Dans ce mémoire, nous proposons un algorithme hybride et original qui combine le filtrage collaboratif avec le filtrage basé sur étiquetage, amélioré par la technique de filtrage basée sur le contexte d’utilisation afin de produire de meilleures recommandations. Notre approche suppose que les préférences de l'utilisateur changent selon le contexte d'utilisation. Par exemple, un utilisateur écoute un genre de musique en conduisant vers son travail, un autre type en voyageant avec la famille en vacances, un autre pendant une soirée romantique ou aux fêtes. De plus, si la sélection a été générée pour plus d'un utilisateur (voyage en famille, fête) le système proposera des chansons en fonction des préférences de tous ces utilisateurs. L'objectif principal de notre système est de recommander à l'utilisateur de la musique à partir de sa collection personnelle ou à partir de la collection du système, les nouveautés et les prochains concerts. Un autre objectif de notre système sera de collecter des données provenant de sources extérieures, en s'appuyant sur des techniques de crawling et sur les flux RSS pour offrir des informations reliées à la musique tels que: les nouveautés, les prochains concerts, les paroles et les artistes similaires. Nous essayerons d’unifier des ensembles de données disponibles gratuitement sur le Web tels que les habitudes d’écoute de Last.fm, la base de données de la musique de MusicBrainz et les étiquettes des MusicStrands afin d'obtenir des identificateurs uniques pour les chansons, les albums et les artistes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recommender systems attempt to predict items in which a user might be interested, given some information about the user's and items' profiles. Most existing recommender systems use content-based or collaborative filtering methods or hybrid methods that combine both techniques (see the sidebar for more details). We created Informed Recommender to address the problem of using consumer opinion about products, expressed online in free-form text, to generate product recommendations. Informed recommender uses prioritized consumer product reviews to make recommendations. Using text-mining techniques, it maps each piece of each review comment automatically into an ontology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Web service is one of the most fundamental technologies in implementing service oriented architecture (SOA) based applications. One essential challenge related to web service is to find suitable candidates with regard to web service consumer’s requests, which is normally called web service discovery. During a web service discovery protocol, it is expected that the consumer will find it hard to distinguish which ones are more suitable in the retrieval set, thereby making selection of web services a critical task. In this paper, inspired by the idea that the service composition pattern is significant hint for service selection, a personal profiling mechanism is proposed to improve ranking and recommendation performance. Since service selection is highly dependent on the composition process, personal knowledge is accumulated from previous service composition process and shared via collaborative filtering where a set of users with similar interest will be firstly identified. Afterwards a web service re-ranking mechanism is employed for personalised recommendation. Experimental studies are conduced and analysed to demonstrate the promising potential of this research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This doctoral thesis focuses on the modeling of multimedia systems to create personalized recommendation services based on the analysis of users’ audiovisual consumption. Research is focused on the characterization of both users’ audiovisual consumption and content, specifically images and video. This double characterization converges into a hybrid recommendation algorithm, adapted to different application scenarios covering different specificities and constraints. Hybrid recommendation systems use both content and user information as input data, applying the knowledge from the analysis of these data as the initial step to feed the algorithms in order to generate personalized recommendations. Regarding the user information, this doctoral thesis focuses on the analysis of audiovisual consumption to infer implicitly acquired preferences. The inference process is based on a new probabilistic model proposed in the text. This model takes into account qualitative and quantitative consumption factors on the one hand, and external factors such as zapping factor or company factor on the other. As for content information, this research focuses on the modeling of descriptors and aesthetic characteristics, which influence the user and are thus useful for the recommendation system. Similarly, the automatic extraction of these descriptors from the audiovisual piece without excessive computational cost has been considered a priority, in order to ensure applicability to different real scenarios. Finally, a new content-based recommendation algorithm has been created from the previously acquired information, i.e. user preferences and content descriptors. This algorithm has been hybridized with a collaborative filtering algorithm obtained from the current state of the art, so as to compare the efficiency of this hybrid recommender with the individual techniques of recommendation (different hybridization techniques of the state of the art have been studied for suitability). The content-based recommendation focuses on the influence of the aesthetic characteristics on the users. The heterogeneity of the possible users of these kinds of systems calls for the use of different criteria and attributes to create effective recommendations. Therefore, the proposed algorithm is adaptable to different perceptions producing a dynamic representation of preferences to obtain personalized recommendations for each user of the system. The hypotheses of this doctoral thesis have been validated by conducting a set of tests with real users, or by querying a database containing user preferences - available to the scientific community. This thesis is structured based on the different research and validation methodologies of the techniques involved. In the three central chapters the state of the art is studied and the developed algorithms and models are validated via self-designed tests. It should be noted that some of these tests are incremental and confirm the validation of previously discussed techniques. Resumen Esta tesis doctoral se centra en el modelado de sistemas multimedia para la creación de servicios personalizados de recomendación a partir del análisis de la actividad de consumo audiovisual de los usuarios. La investigación se focaliza en la caracterización tanto del consumo audiovisual del usuario como de la naturaleza de los contenidos, concretamente imágenes y vídeos. Esta doble caracterización de usuarios y contenidos confluye en un algoritmo de recomendación híbrido que se adapta a distintos escenarios de aplicación, cada uno de ellos con distintas peculiaridades y restricciones. Todo sistema de recomendación híbrido toma como datos de partida tanto información del usuario como del contenido, y utiliza este conocimiento como entrada para algoritmos que permiten generar recomendaciones personalizadas. Por la parte de la información del usuario, la tesis se centra en el análisis del consumo audiovisual para inferir preferencias que, por lo tanto, se adquieren de manera implícita. Para ello, se ha propuesto un nuevo modelo probabilístico que tiene en cuenta factores de consumo tanto cuantitativos como cualitativos, así como otros factores de contorno, como el factor de zapping o el factor de compañía, que condicionan la incertidumbre de la inferencia. En cuanto a la información del contenido, la investigación se ha centrado en la definición de descriptores de carácter estético y morfológico que resultan influyentes en el usuario y que, por lo tanto, son útiles para la recomendación. Del mismo modo, se ha considerado una prioridad que estos descriptores se puedan extraer automáticamente de un contenido sin exigir grandes requisitos computacionales y, de tal forma que se garantice la posibilidad de aplicación a escenarios reales de diverso tipo. Por último, explotando la información de preferencias del usuario y de descripción de los contenidos ya obtenida, se ha creado un nuevo algoritmo de recomendación basado en contenido. Este algoritmo se cruza con un algoritmo de filtrado colaborativo de referencia en el estado del arte, de tal manera que se compara la eficiencia de este recomendador híbrido (donde se ha investigado la idoneidad de las diferentes técnicas de hibridación del estado del arte) con cada una de las técnicas individuales de recomendación. El algoritmo de recomendación basado en contenido que se ha creado se centra en las posibilidades de la influencia de factores estéticos en los usuarios, teniendo en cuenta que la heterogeneidad del conjunto de usuarios provoca que los criterios y atributos que condicionan las preferencias de cada individuo sean diferentes. Por lo tanto, el algoritmo se adapta a las diferentes percepciones y articula una metodología dinámica de representación de las preferencias que permite obtener recomendaciones personalizadas, únicas para cada usuario del sistema. Todas las hipótesis de la tesis han sido debidamente validadas mediante la realización de pruebas con usuarios reales o con bases de datos de preferencias de usuarios que están a disposición de la comunidad científica. La diferente metodología de investigación y validación de cada una de las técnicas abordadas condiciona la estructura de la tesis, de tal manera que los tres capítulos centrales se estructuran sobre su propio estudio del estado del arte y los algoritmos y modelos desarrollados se validan mediante pruebas autónomas, sin impedir que, en algún caso, las pruebas sean incrementales y ratifiquen la validación de técnicas expuestas anteriormente.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the advantages of social networks is the possibility to socialize and personalize the content created or shared by the users. In mobile social networks, where the devices have limited capabilities in terms of screen size and computing power, Multimedia Recommender Systems help to present the most relevant content to the users, depending on their tastes, relationships and profile. Previous recommender systems are not able to cope with the uncertainty of automated tagging and are knowledge domain dependant. In addition, the instantiation of a recommender in this domain should cope with problems arising from the collaborative filtering inherent nature (cold start, banana problem, large number of users to run, etc.). The solution presented in this paper addresses the abovementioned problems by proposing a hybrid image recommender system, which combines collaborative filtering (social techniques) with content-based techniques, leaving the user the liberty to give these processes a personal weight. It takes into account aesthetics and the formal characteristics of the images to overcome the problems of current techniques, improving the performance of existing systems to create a mobile social networks recommender with a high degree of adaptation to any kind of user.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study explores the ongoing pedagogical development of a number of undergraduate design and engineering programmes in the United Kingdom. Observations and data have been collected over several cohorts to bring a valuable perspective to the approaches piloted across two similar university departments while trialling a number of innovative learning strategies. In addition to the concurrent institutional studies the work explores curriculum design that applies the principles of Co-Design, multidisciplinary and trans disciplinary learning, with both engineering and product design students working alongside each other through a practical problem solving learning approach known as the CDIO learning initiative (Conceive, Design Implement and Operate) [1]. The study builds on previous work presented at the 2010 EPDE conference: The Effect of Personality on the Design Team: Lessons from Industry for Design Education [2]. The subsequent work presented in this paper applies the findings to mixed design and engineering team based learning, building on the insight gained through a number of industrial process case studies carried out in current design practice. Developments in delivery also aligning the CDIO principles of learning through doing into a practice based, collaborative learning experience and include elements of the TRIZ creative problem solving technique [3]. The paper will outline case studies involving a number of mixed engineering and design student projects that highlight the CDIO principles, combined with an external industrial design brief. It will compare and contrast the learning experience with that of a KTP derived student project, to examine an industry based model for student projects. In addition key areas of best practice will be presented, and student work from each mode will be discussed at the conference.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Authentication plays an important role in how we interact with computers, mobile devices, the web, etc. The idea of authentication is to uniquely identify a user before granting access to system privileges. For example, in recent years more corporate information and applications have been accessible via the Internet and Intranet. Many employees are working from remote locations and need access to secure corporate files. During this time, it is possible for malicious or unauthorized users to gain access to the system. For this reason, it is logical to have some mechanism in place to detect whether the logged-in user is the same user in control of the user's session. Therefore, highly secure authentication methods must be used. We posit that each of us is unique in our use of computer systems. It is this uniqueness that is leveraged to "continuously authenticate users" while they use web software. To monitor user behavior, n-gram models are used to capture user interactions with web-based software. This statistical language model essentially captures sequences and sub-sequences of user actions, their orderings, and temporal relationships that make them unique by providing a model of how each user typically behaves. Users are then continuously monitored during software operations. Large deviations from "normal behavior" can possibly indicate malicious or unintended behavior. This approach is implemented in a system called Intruder Detector (ID) that models user actions as embodied in web logs generated in response to a user's actions. User identification through web logs is cost-effective and non-intrusive. We perform experiments on a large fielded system with web logs of approximately 4000 users. For these experiments, we use two classification techniques; binary and multi-class classification. We evaluate model-specific differences of user behavior based on coarse-grain (i.e., role) and fine-grain (i.e., individual) analysis. A specific set of metrics are used to provide valuable insight into how each model performs. Intruder Detector achieves accurate results when identifying legitimate users and user types. This tool is also able to detect outliers in role-based user behavior with optimal performance. In addition to web applications, this continuous monitoring technique can be used with other user-based systems such as mobile devices and the analysis of network traffic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have designed this flowchart to help you choose the web filtering option that best suits your needs from three different options: Our free standard web filtering service, enhanced user based filtering or a solution from our framework agreement.