796 resultados para User-based collaborative filtering
Resumo:
Background Young children are known to be the most frequent hospital users compared to older children and young adults. Therefore, they are an important population from economic and policy perspectives of health care delivery. In Switzerland complete hospitalization discharge records for children [<5 years] of four consecutive years [2002–2005] were evaluated in order to analyze variation in patterns of hospital use. Methods Stationary and outpatient hospitalization rates on aggregated ZIP code level were calculated based on census data provided by the Swiss federal statistical office (BfS). Thirty-seven hospital service areas for children [HSAP] were created with the method of "small area analysis", reflecting user-based health markets. Descriptive statistics and general linear models were applied to analyze the data. Results The mean stationary hospitalization rate over four years was 66.1 discharges per 1000 children. Hospitalizations for respiratory problem are most dominant in young children (25.9%) and highest hospitalization rates are associated with geographical factors of urban areas and specific language regions. Statistical models yielded significant effect estimates for these factors and a significant association between ambulatory/outpatient and stationary hospitalization rates. Conclusion The utilization-based approach, using HSAP as spatial representation of user-based health markets, is a valid instrument and allows assessing the supply and demand of children's health care services. The study provides for the first time estimates for several factors associated with the large variation in the utilization and provision of paediatric health care resources in Switzerland.
Resumo:
This paper reports on the results of a research project, on comparing one virtual collaborative environment with a first-person visual immersion (first-perspective interaction) and a second one where the user interacts through a sound-kinetic virtual representation of himself (avatar), as a stress-coping environment in real-life situations. Recent developments in coping research are proposing a shift from a trait-oriented approach of coping to a more situation-specific treatment. We defined as real-life situation a target-oriented situation that demands a complex coping skills inventory of high self-efficacy and internal or external "locus of control" strategies. The participants were 90 normal adults with healthy or impaired coping skills, 25-40 years of age, randomly spread across two groups. There was the same number of participants across groups and gender balance within groups. All two groups went through two phases. In Phase I, Solo, one participant was assessed using a three-stage assessment inspired by the transactional stress theory of Lazarus and the stress inoculation theory of Meichenbaum. In Phase I, each participant was given a coping skills measurement within the time course of various hypothetical stressful encounters performed in two different conditions and a control group. In Condition A, the participant was given a virtual stress assessment scenario relative to a first-person perspective (VRFP). In Condition B, the participant was given a virtual stress assessment scenario relative to a behaviorally realistic motion controlled avatar with sonic feedback (VRSA). In Condition C, the No Treatment Condition (NTC), the participant received just an interview. In Phase II, all three groups were mixed and exercised the same tasks but with two participants in pairs. The results showed that the VRSA group performed notably better in terms of cognitive appraisals, emotions and attributions than the other two groups in Phase I (VRSA, 92%; VRFP, 85%; NTC, 34%). In Phase II, the difference again favored the VRSA group against the other two. These results indicate that a virtual collaborative environment seems to be a consistent coping environment, tapping two classes of stress: (a) aversive or ambiguous situations, and (b) loss or failure situations in relation to the stress inoculation theory. In terms of coping behaviors, a distinction is made between self-directed and environment-directed strategies. A great advantage of the virtual collaborative environment with the behaviorally enhanced sound-kinetic avatar is the consideration of team coping intentions in different stages. Even if the aim is to tap transactional processes in real-life situations, it might be better to conduct research using a sound-kinetic avatar based collaborative environment than a virtual first-person perspective scenario alone. The VE consisted of two dual-processor PC systems, a video splitter, a digital camera and two stereoscopic CRT displays. The system was programmed in C++ and VRScape Immersive Cluster from VRCO, which created an artificial environment that encodes the user's motion from a video camera, targeted at the face of the users and physiological sensors attached to the body.
Resumo:
In this paper we introduce the idea of using a reliability measure associated to the predic- tions made by recommender systems based on collaborative filtering. This reliability mea- sure is based on the usual notion that the more reliable a prediction, the less liable to be wrong. Here we will define a general reliability measure suitable for any arbitrary recom- mender system. We will also show a method for obtaining specific reliability measures specially fitting the needs of different specific recommender systems.
Resumo:
In this paper we provide a method that allows the visualization of similarity relationships present between items of collaborative filtering recommender systems, as well as the relative importance of each of these. The objective is to offer visual representations of the recommender system?s set of items and of their relationships; these graphs show us where the most representative information can be found and which items are rated in a more similar way by the recommender system?s community of users. The visual representations achieved take the shape of phylogenetic trees, displaying the numerical similarity and the reliability between each pair of items considered to be similar. As a case study we provide the results obtained using the public database Movielens 1M, which contains 3900 movies.
Resumo:
La importancia de los sistemas de recomendación ha experimentado un crecimiento exponencial como consecuencia del auge de las redes sociales. En esta tesis doctoral presentaré una amplia visión sobre el estado del arte de los sistemas de recomendación. Incialmente, estos estaba basados en fitrado demográfico, basado en contendio o colaborativo. En la actualidad, estos sistemas incorporan alguna información social al proceso de recomendación. En el futuro utilizarán información implicita, local y personal proveniente del Internet de las cosas. Los sistemas de recomendación basados en filtrado colaborativo se pueden modificar con el fin de realizar recomendaciones a grupos de usuarios. Existen trabajos previos que han incluido estas modificaciones en diferentes etapas del algoritmo de filtrado colaborativo: búsqueda de los vecinos, predicción de las votaciones y elección de las recomendaciones. En esta tesis doctoral proporcionaré un nuevo método que realizar el proceso de unficación (pasar de varios usuarios a un grupo) en el primer paso del algoritmo de filtrado colaborativo: cálculo de la métrica de similaridad. Proporcionaré una formalización completa del método propuesto. Explicaré cómo obtener el conjunto de k vecinos del grupo de usuarios y mostraré cómo obtener recomendaciones usando dichos vecinos. Asimismo, incluiré un ejemplo detallando cada paso del método propuesto en un sistema de recomendación compuesto por 8 usuarios y 10 items. Las principales características del método propuesto son: (a) es más rápido (más eficiente) que las alternativas proporcionadas por otros autores, y (b) es al menos tan exacto y preciso como otras soluciones estudiadas. Para contrastar esta hipótesis realizaré varios experimentos que miden la precisión, la exactitud y el rendimiento del método. Los resultados obtenidos se compararán con los resultados de otras alternativas utilizadas en la recomendación de grupos. Los experimentos se realizarán con las bases de datos de MovieLens y Netflix. ABSTRACT The importance of recommender systems has grown exponentially with the advent of social networks. In this PhD thesis I will provide a wide vision about the state of the art of recommender systems. They were initially based on demographic, contentbased and collaborative filtering. Currently, these systems incorporate some social information to the recommendation process. In the future, they will use implicit, local and personal information from the Internet of Things. As we will see here, recommender systems based on collaborative filtering can be used to perform recommendations to group of users. Previous works have made this modification in different stages of the collaborative filtering algorithm: establishing the neighborhood, prediction phase and determination of recommended items. In this PhD thesis I will provide a new method that carry out the unification process (many users to one group) in the first stage of the collaborative filtering algorithm: similarity metric computation. I will provide a full formalization of the proposed method. I will explain how to obtain the k nearest neighbors of the group of users and I will show how to get recommendations using those users. I will also include a running example of a recommender system with 8 users and 10 items detailing all the steps of the method I will present. The main highlights of the proposed method are: (a) it will be faster (more efficient) that the alternatives provided by other authors, and (b) it will be at least as precise and accurate as other studied solutions. To check this hypothesis I will conduct several experiments measuring the accuracy, the precision and the performance of my method. I will compare these results with the results generated by other methods of group recommendation. The experiments will be carried out using MovieLens and Netflix datasets.
Resumo:
In April 2009, Google Images added a filter for narrowing search results by colour. Several other systems for searching image databases by colour were also released around this time. These colour-based image retrieval systems enable users to search image databases either by selecting colours from a graphical palette (i.e., query-by-colour), by drawing a representation of the colour layout sought (i.e., query-by-sketch), or both. It was comments left by readers of online articles describing these colour-based image retrieval systems that provided us with the inspiration for this research. We were surprised to learn that the underlying query-based technology used in colour-based image retrieval systems today remains remarkably similar to that of systems developed nearly two decades ago. Discovering this ageing retrieval approach, as well as uncovering a large user demographic requiring image search by colour, made us eager to research more effective approaches for colour-based image retrieval. In this thesis, we detail two user studies designed to compare the effectiveness of systems adopting similarity-based visualisations, query-based approaches, or a combination of both, for colour-based image retrieval. In contrast to query-based approaches, similarity-based visualisations display and arrange database images so that images with similar content are located closer together on screen than images with dissimilar content. This removes the need for queries, as users can instead visually explore the database using interactive navigation tools to retrieve images from the database. As we found existing evaluation approaches to be unreliable, we describe how we assessed and compared systems adopting similarity-based visualisations, query-based approaches, or both, meaningfully and systematically using our Mosaic Test - a user-based evaluation approach in which evaluation study participants complete an image mosaic of a predetermined target image using the colour-based image retrieval system under evaluation.
Resumo:
Quality of services (QoS) support is critical for dedicated short range communications (DSRC) vehicle networks based collaborative road safety applications. In this paper we propose an adaptive power and message rate control method for DSRC vehicle networks at road intersections. The design objective is to provide high availability and low latency channels for high priority emergency safety applications while maximizing channel utilization for low priority routine safety applications. In this method an offline simulation based approach is used to find out the best possible configurations of transmit power and message rate for given numbers of vehicles in the network. The identified best configurations are then used online by roadside access points (AP) according to estimated number of vehicles. Simulation results show that this adaptive method significantly outperforms a fixed control method. © 2011 Springer-Verlag.
Resumo:
A variety of content-based image retrieval systems exist which enable users to perform image retrieval based on colour content - i.e., colour-based image retrieval. For the production of media for use in television and film, colour-based image retrieval is useful for retrieving specifically coloured animations, graphics or videos from large databases (by comparing user queries to the colour content of extracted key frames). It is also useful to graphic artists creating realistic computer-generated imagery (CGI). Unfortunately, current methods for evaluating colour-based image retrieval systems have 2 major drawbacks. Firstly, the relevance of images retrieved during the task cannot be measured reliably. Secondly, existing methods do not account for the creative design activity known as reflection-in-action. Consequently, the development and application of novel and potentially more effective colour-based image retrieval approaches, better supporting the large number of users creating media for use in television and film productions, is not possible as their efficacy cannot be reliably measured and compared to existing technologies. As a solution to the problem, this paper introduces the Mosaic Test. The Mosaic Test is a user-based evaluation approach in which participants complete an image mosaic of a predetermined target image, using the colour-based image retrieval system that is being evaluated. In this paper, we introduce the Mosaic Test and report on a user evaluation. The findings of the study reveal that the Mosaic Test overcomes the 2 major drawbacks associated with existing evaluation methods and does not require expert participants. © 2012 Springer Science+Business Media, LLC.
Resumo:
Nowadays, the amount of customers using sites for shopping is greatly increasing, mainly due to the easiness and rapidity of this way of consumption. The sites, differently from physical stores, can make anything available to customers. In this context, Recommender Systems (RS) have become indispensable to help consumers to find products that may possibly pleasant or be useful to them. These systems often use techniques of Collaborating Filtering (CF), whose main underlying idea is that products are recommended to a given user based on purchase information and evaluations of past, by a group of users similar to the user who is requesting recommendation. One of the main challenges faced by such a technique is the need of the user to provide some information about her preferences on products in order to get further recommendations from the system. When there are items that do not have ratings or that possess quite few ratings available, the recommender system performs poorly. This problem is known as new item cold-start. In this paper, we propose to investigate in what extent information on visual attention can help to produce more accurate recommendation models. We present a new CF strategy, called IKB-MS, that uses visual attention to characterize images and alleviate the new item cold-start problem. In order to validate this strategy, we created a clothing image database and we use three algorithms well known for the extraction of visual attention these images. An extensive set of experiments shows that our approach is efficient and outperforms state-of-the-art CF RS.
Resumo:
Postprint
Resumo:
The selected publications are focused on the relations between users, eGames and the educational context, and how they interact together, so that both learning and user performance are improved through feedback provision. A key part of this analysis is the identification of behavioural, anthropological patterns, so that users can be clustered based on their actions, and the steps taken in the system (e.g. social network, online community, or virtual campus). In doing so, we can analyse large data sets of information made by a broad user sample,which will provide more accurate statistical reports and readings. Furthermore, this research is focused on how users can be clustered based on individual and group behaviour, so that a personalized support through feedback is provided, and the personal learning process is improved as well as the group interaction. We take inputs from every person and from the group they belong to, cluster the contributions, find behavioural patterns and provide personalized feedback to the individual and the group, based on personal and group findings. And we do all this in the context of educational games integrated in learning communities and learning management systems. To carry out this research we design a set of research questions along the 10-year published work presented in this thesis. We ask if the users can be clustered together based on the inputs provided by them and their groups; if and how these data are useful to improve the learner performance and the group interaction; if and how feedback becomes a useful tool for such pedagogical goal; if and how eGames become a powerful context to deploy the pedagogical methodology and the various research methods and activities that make use of that feedback to encourage learning and interaction; if and how a game design and a learning design must be defined and implemented to achieve these objectives, and to facilitate the productive authoring and integration of eGames in pedagogical contexts and frameworks. We conclude that educational games are a resourceful tool to provide a user experience towards a better personalized learning performance and an enhance group interaction along the way. To do so, eGames, while integrated in an educational context, must follow a specific set of user and technical requirements, so that the playful context supports the pedagogical model underneath. We also conclude that, while playing, users can be clustered based on their personal behaviour and interaction with others, thanks to the pattern identification. Based on this information, a set of recommendations are provided Digital Anthropology and educational eGames 6 /216 to the user and the group in the form of personalized feedback, timely managed for an optimum impact on learning performance and group interaction level. In this research, Digital Anthropology is introduced as a concept at a late stage to provide a backbone across various academic fields including: Social Science, Cognitive Science, Behavioural Science, Educational games and, of course, Technology-enhance learning. Although just recently described as an evolution of traditional anthropology, this approach to digital behaviour and social structure facilitates the understanding amongst fields and a comprehensive view towards a combined approach. This research takes forward the already existing work and published research onusers and eGames for learning, and turns the focus onto the next step — the clustering of users based on their behaviour and offering proper, personalized feedback to the user based on that clustering, rather than just on isolated inputs from every user. Indeed, this pattern recognition in the described context of eGames in educational contexts, and towards the presented aim of personalized counselling to the user and the group through feedback, is something that has not been accomplished before.
Resumo:
March 19 - 22, 2006, São Paulo, BRAZIL World Congress on Computer Science, Engineering and Technology Education
Resumo:
This paper describes how MPEG-4 object based video (obv) can be used to allow selected objects to be inserted into the play-out stream to a specific user based on a profile derived for that user. The application scenario described here is for personalized product placement, and considers the value of this application in the current and evolving commercial media distribution market given the huge emphasis media distributors are currently placing on targeted advertising. This level of application of video content requires a sophisticated content description and metadata system (e.g., MPEG-7). The scenario considers the requirement for global libraries to provide the objects to be inserted into the streams. The paper then considers the commercial trading of objects between the libraries, video service providers, advertising agencies and other parties involved in the service. Consequently a brokerage of video objects is proposed based on negotiation and trading using intelligent agents representing the various parties. The proposed Media Brokerage Platform is a multi-agent system structured in two layers. In the top layer, there is a collection of coarse grain agents representing the real world players – the providers and deliverers of media contents and the market regulator profiler – and, in the bottom layer, there is a set of finer grain agents constituting the marketplace – the delegate agents and the market agent. For knowledge representation (domain, strategic and negotiation protocols) we propose a Semantic Web approach based on ontologies. The media components contents should be represented in MPEG-7 and the metadata describing the objects to be traded should follow a specific ontology. The top layer content providers and deliverers are modelled by intelligent autonomous agents that express their will to transact – buy or sell – media components by registering at a service registry. The market regulator profiler creates, according to the selected profile, a market agent, which, in turn, checks the service registry for potential trading partners for a given component and invites them for the marketplace. The subsequent negotiation and actual transaction is performed by delegate agents in accordance with their profiles and the predefined rules of the market.
Resumo:
As aplicações móveis de serviços baseados na localização, denominados LBS (Location-based services), disponibilizam serviços ao utilizador baseadas na sua localização geográfica. Este tipo de serviços começou a surgir ainda na década de 90 e, à medida que o número de dispositivos móveis cresceu de forma exponencial, a sua oferta disparou consideravelmente. Existem várias áreas com aplicabilidade prática, mas o foco desta tese é a pesquisa e localização de pontos de interesse (POI’s). Através dos sensores que os dispositivos móveis atualmente disponibilizam, torna-se possível localizar a posição do utilizador e apresentar-lhe os pontos de interesse que estão situados em seu redor. No entanto essa informação isolada revela-se por vezes insuficiente, uma vez que esses pontos de interesse são à partida desconhecidos para o utilizador. Através do serviço coolplaces, um projeto que pretende dedicar-se à pesquisa e partilha de POI’s, podemos criar a nossa rede de amigos e de locais, beneficiando assim da respetiva informação de contexto de um determinado POI. As inovações tecnológicas permitiram também o aparecimento de aplicações de Realidade Aumentada nos dispositivos móveis, isto é, aplicações capazes de sobrepor imagens virtuais a visualizações do mundo real. Considerando a visualização de POI’s num dado ambiente, se encararmos a Realidade Aumentada como um potenciador da interação do utilizador com o mundo real, rapidamente identificamos as potencialidades da junção destes conceitos numa só aplicação. Sendo assim, o trabalho desenvolvido nesta tese pretende constituir um estudo sobre a implementação e desenvolvimento de um módulo de Realidade Aumentada para a aplicação móvel do serviço coolplaces, fazendo uso da tecnologia disponível no mercado de forma a proporcionar uma experiência inovadora e acrescentar valor à referida aplicação.
Resumo:
Neste trabalho faz-se uma pesquisa e análise dos conceitos associados à navegação inercial para estimar a distância percorrida por uma pessoa. Foi desenvolvida uma plataforma de hardware para implementar os algoritmos de navegação inercial e estudar a marcha humana. Os testes efetuados permitiram adaptar os algoritmos de navegação inercial para humanos e testar várias técnicas para reduzir o erro na estimativa da distância percorrida. O sistema desenvolvido é um sistema modular que permite estudar o efeito da inserção de novos sensores. Desta forma foram adaptados os algoritmos de navegação para permitir a utilização da informação dos sensores de força colocados na planta do pé do utilizador. A partir desta arquitetura foram efetuadas duas abordagens para o cálculo da distância percorrida por uma pessoa. A primeira abordagem estima a distância percorrida considerando o número de passos. A segunda abordagem faz uma estimação da distância percorrida com base nos algoritmos de navegação inercial. Foram realizados um conjunto de testes para comparar os erros na estimativa da distância percorrida pelas abordagens efetuadas. A primeira abordagem obteve um erro médio de 4,103% em várias cadências de passo. Este erro foi obtido após sintonia para o utilizador em questão. A segunda abordagem obteve um erro de 9,423%. De forma a reduzir o erro recorreu-se ao filtro de Kalman o que levou a uma redução do erro para 9,192%. Por fim, recorreu-se aos sensores de força que permitiram uma redução para 8,172%. A segunda abordagem apesar de ter um erro maior não depende do utilizador pois não necessita de sintonia dos parâmetros para estimar a distância para cada pessoa. Os testes efetuados permitiram, através dos sensores de força, testar a importância da força sentida pela planta do pé para aferir a fase do ciclo de marcha. Esta capacidade permite reduzir os erros na estimativa da distância percorrida e obter uma maior robustez neste tipo de sistemas.