998 resultados para Urea cycle enzymes


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oilseeds are a high-value natural resource, due to its use as a substitute for petroleum. However, the storage time can reduce seed viability and oil quality. Therefore, scientific efforts have been made to provide a increment of storage time, germination rates and plant establishment of high-value oilseeds. The seedling establishment depends of the plant pass over the functional transition stage, characterized by a metabolic change from heterotrophic condition to autotrophic one. The storage oil mobilization is performed by β-oxidation process and the glyoxylate cycle. Also, the functional transition involves acclimation to photosynthetic condition, which generally includes the participation of antioxidant system and the reactive oxygen species, the latter are produced in various reactions of primary and secondary metabolism. In the present study, Catalase was inhibited during the functional transition of sunflower and safflower, after were performed many analyzes to elucidate the effects caused on the SOD and APX antioxidant systems. Also, were checked the changes in expression pattern of the glyoxylate cycle enzymes markers, ICL and MLS. It was observed that after CAT inhibition, the SOD and APX antioxidant systems allow the seedling establishment. Besides, was verified that both oilseeds can be accelerate the reverse mobilization and the photosynthetic establishment when Catalase activity has dramatically decreased

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gaseous N losses from soil are considerable, resulting mostly from ammonia volatilization linked to agricultural activities such as pasture fertilization. The use of simple and accessible measurement methods of such losses is fundamental in the evaluation of the N cycle in agricultural systems. The purpose of this study was to evaluate quantification methods of NH3 volatilization from fertilized surface soil with urea, with minimal influence on the volatilization processes. The greenhouse experiment was arranged in a completely randomized design with 13 treatments and five replications, with the following treatments: (1) Polyurethane foam (density 20 kg m-3) with phosphoric acid solution absorber (foam absorber), installed 1, 5, 10 and 20 cm above the soil surface; (2) Paper filter with sulfuric acid solution absorber (paper absorber, 1, 5, 10 and 20 cm above the soil surface); (3) Sulfuric acid solution absorber (1, 5 and 10 cm above the soil surface); (4) Semi-open static collector; (5) 15N balance (control). The foam absorber placed 1 cm above the soil surface estimated the real daily rate of loss and accumulated loss of NH3N and proved efficient in capturing NH3 volatized from urea-treated soil. The estimates based on acid absorbers 1, 5 and 10 cm above the soil surface and paper absorbers 1 and 5 cm above the soil surface were only realistic for accumulated N-NH3 losses. Foam absorbers can be indicated to quantify accumulated and daily rates of NH3 volatilization losses similarly to an open static chamber, making calibration equations or correction factors unnecessary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Desulfovibrio desulfuricans was the first species of a sulphatereducing bacterium to be isolated, in 1895. Since that time, many questions were raised in the scientific community regarding the metabolic and ecological aspects of these bacteria. At present, there is still a myriad of open questions remaining to be answered to enlarge our knowledge of the metabolic pathways operative in these bacteria that have implications in the sulfur cycle, in biocorrosion, namely in sewers and in oil and gas systems, and in bioremediation of several toxic metals. The work presented in this dissertation aimed at contributing with new insights of enzymes involved in two different metabolic systems on Desulfovibrio species, namely enzymes that play a role in the response to oxidative stress and that are involved in the haem biosynthetic pathway.(...)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In liver, the glyoxylate cycle contributes to two metabolic functions, urea and glucose synthesis. One of the key enzymes in this pathway is glyoxylate reductase/hydroxypyruvate reductase (GRHPR) whose dysfunction in human causes primary hyperoxaluria type 2, a disease resulting in oxalate accumulation and formation of kidney stones. In this study, we provide evidence for a transcriptional regulation by the peroxisome proliferator-activated receptor alpha (PPARalpha) of the mouse GRHPR gene in liver. Mice fed with a PPARalpha ligand or in which PPARalpha activity is enhanced by fasting increase their GRHPR gene expression via a peroxisome proliferator response element located in the promoter region of the gene. Consistent with these observations, mice deficient in PPARalpha present higher plasma levels of oxalate in comparison with their wild type counterparts. As expected, the administration of a PPARalpha ligand (Wy-14,643) reduces the plasma oxalate levels. Surprisingly, this effect is also observed in null mice, suggesting a PPARalpha-independent action of the compound. Despite a high degree of similarity between the transcribed region of the human and mouse GRHPR gene, the human promoter has been dramatically reorganized, which has resulted in a loss of PPARalpha regulation. Overall, these data indicate a species-specific regulation by PPARalpha of GRHPR, a key gene of the glyoxylate cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SUMMARY LATS2 is a member of the Lats tumour suppressor gene family. The human LATS2 gene is located at chromosome 13q11-12, which has been shown to be a hot spot (67%) for LOH in nonsmall cell lung cancer. Both lats mosaic flies and LATS1 deficient mice spontaneously develop tumours, an observation that is explained by the function of LATS1 in suppressing tumourigenesis by negatively regulating cell proliferation by modulating Cdc2/Cyclin A activity. LATS1 also plays a critical role in maintenance of ploidy through its action on the spindle assembly checkpoint. Initial insights into the function of LATS2 reveals that the protein is involved in the G2/M transition of the cell cycle, whereby it controls the phosphorylation status of Cdc25C. The aim of the present study was to identify LATS2 interacting partners that would provide a more thorough understanding of the molecular pathways in which the protein is involved. The yeast two-hybrid system identified a number of candidate genes that interact with LATS2. Most of the interactions were confirmed biochemically by GST-pull down assays that enabled us to demonstrate that LATS2 is an integral component of the Signalosome complex. The Signalosome is thought to be required for the establishment of functional Cullin-based E3 ubiquitin ligases, the substrate-recognition elements of the ubiquitin-mediated protein proteolytic pathway. The findings that LATS2 also interacts with all of the components of the E3 enzymes allows us to postulate that LATS2 is probably involved in the regulation of this Signalosome-E3 super-complex. In addition, the discovery that LATS2 associates with multiple protein kinases localised at the cellular membrane and in various signalling cascades supports the idea that LATS2 functions as an integrator of signals which allows it to monitor the activity of these pathways and translate these signals through its action on the Signalosome. Furthermore, the observation that a kinase-dead LATS2 mutant arrests at the G2/M phase of the cell cycle, demonstrates that the protein, through the action of its kinase domain, is crucial for progression through the cell cycle, an action in accordance to its proposed role as a regulator of E3 ubiquitin ligases. The findings presented herein provide evidence that LATS2 associates with the Signalosome-E3 ubiquitin ligases super-complex which governs protein stability. Any alteration of the protein would have a strong impact on pathways that modulate cell proliferation, as shown by its implication in tumourigenesis. RESUME LATS2 est un membre de la famille de gènes suppresseurs de tumeurs LATS. Le gène humain LATS2 est situé sur le chromosome 13q11-12, une région qui s'est avérée être un point sensible (67%) dans la perte d'hétérozigosité (LOH) notamment pour le cancer du poumon. Le fait que des tumeurs se développent spontanément chez les souris qui sont déficientes pour le gène LATS1 ainsi que dans des cellules mutantes pour LATS chez la Drosophile, est expliqué Par la fonction de LATS1, qui est de supprimer l'apparition de tumeurs en réprimant la prolifération cellulaire à travers sa capacité à réguler l'activité de Cdc2/Cyciine A. LATS1 joue également un rôle important au niveau du maintient de la ploïdie de la cellule, au travers de son action sur les points de contrôle de l'assemblage du fuseau mitotique. Les premières études du gène LATS2 indiquent que la protéine est, par son contrôle des réactions de phosphorylation de la Cdc25C, impliquée dans la transition 021M. Le but de cette étude était d'identifier les protéines qui interagissent avec LATS2, en vue d'obtenir une compréhension plus approfondie des mécanismes moléculaires dans lesquels LATS2 se trouve engagée. Le système de double-hybride chez la levure a permis l'identification d'un grand nombre de gènes qui interagissent avec LATS2. La plupart des interactions ont été confirmées par GST «pull clown», une technique in vitro qui a permis de démontrer que LATS2 est un composant intégral du Signalosome. Ce complexe est supposé réguler l'activité des E3 ubiquitine-rigases, les éléments responsables du recrutement des substrats qui doivent être recyclés par la voie de dégradation ubiquitine-dépendante. Les résultats obtenus indiquent également que LATS2 interagit avec tous les composants des enzymes E3, ce qui nous permet de soumettre l'idée selon laquelle la protéine LATS2 est en fait impliquée dans la régulation du complexe Signalosorne-E3. De plus, la découverte que LATS2 se trouve associée à plusieurs protéines kinases localisées au niveau de la membrane cellulaire, ainsi que dans diverses voies de transduction, confirment l'idée que LATS2 fonctionne en tant que molécule qui intègre les signaux en provenance de ces différentes voies cellulaires. De ce fait, il lui serait possible de coordonner la destruction des protéines au moyen du complexe Signalosome, permettant ainsi de réprimer l'activité des voies de signalisation. En outre, l'introduction d'une mutation dans le domaine kinase de LATS2 résulte en l'arrêt du cycle cellulaire en G2/M, ce qui montre que la protéine, au travers de son domaine kinase, est cruciale pour le bon fonctionnement du cycle cellulaire, ceci en accord avec son rôle proposé comme régulateur des E3 ubiquitine-ligases. Les résultats présentés dans ce manuscrit démontrent que la protéine LATS2 se trouve associée au complexe Signalosome-E3 qui régule la dégradation des protéines. La moindre modification de la protéine engendrerait des répercussions importantes au niveau des voies de transduction qui contrôlent fa prolifération ceilulaire, ce qui atteste du rôle déterminant que joue LAT32 dans la tumorigénèse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Only one drug is currently available for the treatment and control of schistosomiasis and the increasing risk of selecting strains of schistosome that are resistant to praziquantel means that the development of new drugs is urgent. With this objective we have chosen to target the enzymes modifying histones and in particular the histone acetyltransferases and histone deacetylases (HDAC). Inhibitors of HDACs (HDACi) are under intense study as potential anti-cancer drugs and act via the induction of cell cycle arrest and/or apoptosis. Schistosomes like other parasites can be considered as similar to tumours in that they maintain an intense metabolic activity and rate of cell division that is outside the control of the host. We have shown that HDACi can induce apoptosis and death of schistosomes maintained in culture and have set up a consortium (Schistosome Epigenetics: Targets, Regulation, New Drugs) funded by the European Commission with the aim of developing inhibitors specific for schistosome histone modifying enzymes as novel lead compounds for drug development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacteria must control the progression of their cell cycle in response to nutrient availability. This regulation can be mediated by guanosine tetra- or pentaphosphate [(p)ppGpp], which are synthesized by enzymes of the RelA/SpoT homologue (Rsh) family, particularly under starvation conditions. Here, we study the effects of (p)ppGpp on the cell cycle of Caulobacter crescentus, an oligotrophic bacterium with a dimorphic life cycle. C. crescentus divides asymmetrically, producing a motile swarmer cell that cannot replicate its chromosome and a sessile stalked cell that is replication competent. The swarmer cell rapidly differentiates into a stalked cell in appropriate conditions. An artificial increase in the levels of (p)ppGpp in nonstarved C. crescentus cells was achieved by expressing a truncated relA gene from Escherichia coli, encoding a constitutively active (p)ppGpp synthetase. By combining single-cell microscopy, flow cytometry approaches, and swarming assays, we show that an increase in the intracellular concentration of (p)ppGpp is sufficient to slow down the swarmer-to-stalked cell differentiation process and to delay the initiation of chromosome replication. We also present evidence that the intracellular levels of two master regulators of the cell cycle of C. crescentus, DnaA and CtrA, are modulated in response to (p)ppGpp accumulation, even in the absence of actual starvation. CtrA proteolysis and DnaA synthesis seem indirectly inhibited by (p)ppGpp accumulation. By extending the life span of the motile nonreproductive swarmer cell and thus promoting dispersal and foraging functions over multiplication under starvation conditions, (p)ppGpp may play a central role in the ecological adaptation of C. crescentus to nutritional stresses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gaseous N losses from soil are considerable, resulting mostly from ammonia volatilization linked to agricultural activities such as pasture fertilization. The use of simple and accessible measurement methods of such losses is fundamental in the evaluation of the N cycle in agricultural systems. The purpose of this study was to evaluate quantification methods of NH3 volatilization from fertilized surface soil with urea, with minimal influence on the volatilization processes. The greenhouse experiment was arranged in a completely randomized design with 13 treatments and five replications, with the following treatments: (1) Polyurethane foam (density 20 kg m-3) with phosphoric acid solution absorber (foam absorber), installed 1, 5, 10 and 20 cm above the soil surface; (2) Paper filter with sulfuric acid solution absorber (paper absorber, 1, 5, 10 and 20 cm above the soil surface); (3) Sulfuric acid solution absorber (1, 5 and 10 cm above the soil surface); (4) Semi-open static collector; (5) 15N balance (control). The foam absorber placed 1 cm above the soil surface estimated the real daily rate of loss and accumulated loss of NH3N and proved efficient in capturing NH3 volatized from urea-treated soil. The estimates based on acid absorbers 1, 5 and 10 cm above the soil surface and paper absorbers 1 and 5 cm above the soil surface were only realistic for accumulated N-NH3 losses. Foam absorbers can be indicated to quantify accumulated and daily rates of NH3 volatilization losses similarly to an open static chamber, making calibration equations or correction factors unnecessary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A form of increasing the efficiency of N fertilizer is by coating urea with polymers to reduce ammonia volatilization. The aim of this study was to evaluate the effect of polymer-coated urea on the control of ammonia volatilization, yield and nutritional characteristics of maize. The experiment was carried out during one maize growing cycle in 2009/10 on a Geric Ferralsol, inUberlândia, MG, Brazil. Nitrogen fertilizers were applied as topdressing on the soil surface in the following urea treatments: polymer-coated urea at rates of 45, 67.5 and 90 kg ha-1 N and one control treatment (no N), in randomized blocks with four replications. Nitrogen application had a favorable effect on N concentrations in leaves and grains, Soil Plant Analysis Development (SPAD) chlorophyll meter readings and on grain yield, where as coated urea had no effect on the volatilization rates, SPAD readings and N leaf and grain concentration, nor on grain yield in comparison to conventional fertilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Degradation of unsaturated fatty acids through the peroxisomal beta-oxidation pathway requires the participation of auxiliary enzymes in addition to the enzymes of the core beta-oxidation cycle. The auxiliary enzyme delta(3,5),delta(2,4)-dienoyl-coenzyme A (CoA) isomerase has been well studied in yeast (Saccharomyces cerevisiae) and mammals, but no plant homolog had been identified and characterized at the biochemical or molecular level. A candidate gene (At5g43280) was identified in Arabidopsis (Arabidopsis thaliana) encoding a protein showing homology to the rat (Rattus norvegicus) delta(3,5),delta(2,4)-dienoyl-CoA isomerase, and possessing an enoyl-CoA hydratase/isomerase fingerprint as well as aspartic and glutamic residues shown to be important for catalytic activity of the mammalian enzyme. The protein, named AtDCI1, contains a peroxisome targeting sequence at the C terminus, and fusion of a fluorescent protein to AtDCI1 directed the chimeric protein to the peroxisome in onion (Allium cepa) cells. AtDCI1 expressed in Escherichia coli was shown to have delta(3,5),delta(2,4)-dienoyl-CoA isomerase activity in vitro. Furthermore, using the synthesis of polyhydroxyalkanoate in yeast peroxisomes as an analytical tool to study the beta-oxidation cycle, expression of AtDCI1 was shown to complement the yeast mutant deficient in the delta(3,5),delta(2,4)-dienoyl-CoA isomerase, thus showing that AtDCI1 is also appropriately targeted to the peroxisome in yeast and has delta(3,5),delta(2,4)-dienoyl-CoA isomerase activity in vivo. The AtDCI1 gene is expressed constitutively in several tissues, but expression is particularly induced during seed germination. Proteins showing high homology with AtDCI1 are found in gymnosperms as well as angiosperms belonging to the Monocotyledon or Dicotyledon classes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: The ß-oxidation is the universal pathway that allows living organisms to degrade fatty acids. leading to lipid homeostasis and carbon and energy recovery from the fatty acid molecules. This pathway is centred on four core enzymatic activities sufficient to degrade saturated fatty acids. Additional auxiliary enzymes of the ß-oxidation are necessary for the complete degradation of a larger array of molecules encompassing the unsaturated fatty acids. The main pathways of the ßoxidation of fatty acids have been investigated extensively and auxiliary enzymes are well-known in mammals and yeast. The comparison of the established ß-oxidation systems suggests that the activities that are required to proceed to the full degradation of unsaturated fatty acids are present regardless of the organism and rely on common active site templates. The precise identity of the plant enzymes was unknown. By homology searches in the genome of Arabidopsis thaliana, I identified genes. encoding for proteins that could be orthologous to the yeast or animal auxiliary enzymes Δ 3, Δ 2-enoyl-CoA isomerase, Δ 3,5, Δ 2,4 -dienoyl-CoA isomerase, and type 2 enoyl-CoA hydratase. I established that these genes are expressed in Arabidopsis and that their expression can be correlated to the expression of core ß-oxidation genes. Through the observation of chimeric fluorescent protein fusions, I demonstrated that the identified proteins are localized in the peroxisóme, the only organelle where the ß-oxidation occurs in plants. Enzymatic assays were performed with the partially purified enzymes to demonstrate that the identified enzymes can catalyze the same in vitro reactions as their non-plant orthologs. The activities in vivo of the plant enzymes were demonstrated by heterologous complementation of the corresponding yeast Saccharomyces cerevisiae mutants. The complementation was visualized using the artificial polyhydroxyalkanoate (PHA) production in yeast peroxisomes. The recombinant strains, expressing a Pseudomonas aeruginosa PHA synthase modified for a peroxisomal localization, produce this polymer that serves as a trap for the 3-hydroxyacyl-CoA intermediaries of the ßoxidation and that reflects qualitatively and quantitatively the array of molecules that are processed through the ß-oxidation. This complementation demonstrated the implication of the plant Δ 3, Δ 2-enoyl-CoA isomerases and Δ3,5, Δ2,4-dienoyl-CoA isomerase in the degradation of odd chain position unsaturated fatty acids. The presence of a monofunctional type 2 enoyl-CoA hydratase is a novel in eukaryotes. Downregulation of the corresponding gene expression in an Arabidopsis line, modified to produce PHA in the peroxisome, demonstrated thàt this enzyme participates in vivo to the conversion of the intermediate 3R-hydroxyacyl-CoA, generated by the metabolism of fatty acids with a cis (Z)-unsaturated bond on an even-numbered carbon, to the 2Eenoyl-CoA for further degradation through the core ß-oxidation cycle. Résumé: La ß-oxydation est une voie universelle de dégradation des acides gras qui permet aux organismes vivants d'assurer une homéostasie lipidique et de récupérer l'énergie et le carbone contenus dans les acides gras. Le coeur de cette voie est composé de quatre réactions enzymatiques suffisantes à la dégradation des acides gras saturés. La présence des enzymes auxiliaires de la ß-oxydation est nécessaire à la dégradation d'une gamme plus étendue de molécules comprenant les acides gras insaturés. Les voies principales de la ß-oxydation des acides gras ont été étudiées en détail et les enzymes auxiliaires sont déterminées chez les mammifères et la levure. La comparaison entre les systèmes de ß-oxydation connus suggère que les activités requises pour la dégradation complète des acides gras insaturés reposent sur la présence de site actifs similaires. L'identité précise des enzymes auxiliaires chez les plantes était inconnue. En cherchant par homologie dans le génome de la plante modèle Arabidopsis thaliana, j'ai identifié des gènes codant pour des protéines pouvant être orthologues aux enzymes auxiliaires Δ3 Δ2-enoyl-CoA isomérase, Δ 3,5 Δ 2,4-dienoyl-CoA isomérase et enoyl-CoA hydratase de type 2 d'origine fongique ou mammalienne. J'ai établi la corrélation de l'expression de ces gènes dans Arabidopsis avec celle de gènes des enzymes du coeur de la ß-oxydation. En observant des chimères de fusion avec des protéines fluorescentes, j'ai démontré que les protéines identifiées sont localisées dans le péroxysomes, le seul organelle où la ß-oxydation se déroule chez les plantes. Des essais enzymatiques ont été conduits avec ces enzymes partiellement purifiées pour démontrer que les enzymes identifiées sont capables de catalyser in vitro les mêmes réactions que leurs orthologues non végétaux. Les activités des enzymes végétales in vivo ont été .démontrées par complémentation hétérologue des mutants de délétion correspondants de levure Saccharomyces cerevisiae. La visualisation de la complémentation est rendue possible par la synthèse de polyhydroxyalcanoate (PHA) dans les péroxysomes de levure. Les souches recombinantes expriment la PHA synthase de Pseudomonas aeruginosa modifiée pour être localisée dans le péroxysome produisent ce polymère qui sert de piège pour les 3-hydroxyacylCoAs intermédiaires de la ß-oxydation et qui reflète qualitativement et quantitativement la gamme de molécules qui subit la ß-oxydation. Cette complémentation a permis de démontrer que les Δ3, Δ2-enoyl-CoA isomérases, et la Δ3.5, Δ2,4-dienoyl-CoA isomérase végétales sont impliquées dans la dégradation des acides gras insaturés en position impaire. L'enoyl-CoA hydratase de type 2 monofonctionelle est une enzyme nouvelle chez les eucaryotes. La sous-expression du gène correspondant dans une lignée d'Arabidopsis modifiée pour produite du PHA dans le péroxysome a permis de démontrer que cette enzyme participe in vivo à la dégradation des acides gras ayant une double liaison en conformation cis (Z) en position paire.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Beta-oxidation of the conjugated linoleic acid 9-cis,11-trans-octadecadienoic acid (rumenic acid) was analyzed in vivo in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanoate is synthesized by the polymerization of the beta-oxidation intermediates 3-hydroxyacyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The amount of polyhydroxyalkanaote synthesized from the degradation of rumenic acid was found to be similar to the amount synthesized from the degradation of 10-trans,12-cis-octadecadienoic acid, oleic acid or 10-cis-heptadecenoic acid. Furthermore, the degradation of 10-cis-heptadecenoic acid was found to be unaffected by the presence of rumenic acid in the media. Efficient degradation of rumenic acid was found to be independent of the Delta(3,5),Delta(2,4)-dienoyl-CoA isomerase but instead relied on the presence of Delta(3),Delta(2)-enoyl-CoA isomerase activity. The presence of the unsaturated monomer 3-hydroxydodecenoic acid in polyhydroxyalkanoate derived from rumenic acid degradation was found to be dependent on the presence of a Delta(3),Delta(2)-enoyl-CoA isomerase activity. Together, these data indicate that rumenic acid is mainly degraded in vivo in S. cerevisiae through a pathway requiring only the participation of the auxiliary enzymes Delta(3),Delta(2)-enoyl-CoA isomerase, along with the enzyme of the core beta-oxidation cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives of this study were to evaluate nitrogen utilization by sugarcane ratoon from two sources, applied urea and sugarcane straw covering soil surface (trash blanket), besides the recovery of N from both sources in the soil-plant system. The following treatments were established in a randomized block design with four replicates: T1, vinasse-urea (100 kg ha-1 of urea-N) mixture applied on the total area of the soil covered with cane trash labeled with 15N; T2, vinasse-urea mixture (urea labeled with 15N; 100 kg ha-1 of urea-N) applied on the total area of the soil covered with non-labeled sugarcane trash; and T3, urea-15N (100 kg ha-1 of urea-N) applied in furrows at both sides of cane rows, with previous surface application of vinasse, onto soil without trash covering. The vinasse was applied at a rate of 100 m³ ha-1 in all treatments. The experiment was carried out on a Yellow Red Podzolic soil (Paleudalf), from October 1997 to August 1998, in Piracicaba, SP, Brazil. The nitrogen use efficiency of urea by the sugarcane ratoon was 21%, while that of the sugarcane straw was 9%. The main contributions of N from sugarcane trash, during one cycle, are the preservation and increase of the organic N in soil. The tendency for a lower accumulation of urea-N in the sugarcane plant, in the soil surface covered with sugarcane residue, was compensated by the assimilation of N from trash mineralization. Nitrogen derived from cane trash was more available to plants in the second half of the ratoon cycle

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Beta-oxidation of the conjugated linoleic acid 9-cis,11-trans-octadecadienoic acid (rumenic acid) was analyzed in vivo in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanoate is synthesized by the polymerization of the beta-oxidation intermediates 3-hydroxyacyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The amount of polyhydroxyalkanaote synthesized from the degradation of rumenic acid was found to be similar to the amount synthesized from the degradation of 10-trans,12-cis-octadecadienoic acid, oleic acid or 10-cis-heptadecenoic acid. Furthermore, the degradation of 10-cis-heptadecenoic acid was found to be unaffected by the presence of rumenic acid in the media. Efficient degradation of rumenic acid was found to be independent of the Delta(3,5),Delta(2,4)-dienoyl-CoA isomerase but instead relied on the presence of Delta(3),Delta(2)-enoyl-CoA isomerase activity. The presence of the unsaturated monomer 3-hydroxydodecenoic acid in polyhydroxyalkanoate derived from rumenic acid degradation was found to be dependent on the presence of a Delta(3),Delta(2)-enoyl-CoA isomerase activity. Together, these data indicate that rumenic acid is mainly degraded in vivo in S. cerevisiae through a pathway requiring only the participation of the auxiliary enzymes Delta(3),Delta(2)-enoyl-CoA isomerase, along with the enzyme of the core beta-oxidation cycle.