970 resultados para Ultrasound extractions
Resumo:
If the Internet could be used as a method of transmitting ultrasound images taken in the field quickly and effectively, it would bring tertiary consultation to even extremely remote centres. The aim of the study was to evaluate the maximum degree of compression of fetal ultrasound video-recordings that would not compromise signal quality. A digital fetal ultrasound videorecording of 90 s was produced, resulting in a file size of 512 MByte. The file was compressed to 2, 5 and 10 MByte. The recordings were viewed by a panel of four experienced observers who were blinded to the compression ratio used. Using a simple seven-point scoring system, the observers rated the quality of the clip on 17 items. The maximum compression ratio that was considered clinically acceptable was found to be 1:50-1:100. This produced final file sizes of 5-10 MByte, corresponding to a screen size of 320 x 240 pixels, running at 15 frames/s. This study expands the possibilities for providing tertiary perinatal services to the wider community.
Resumo:
We have established a realtime fetal tele-ultrasound consultation service in Queensland, which has been integrated into our routine clinical practice, The service, which uses ISDN transmission at 384 kbit/s, allows patients in Townsville to be examined by subspecialists in Brisbane, 1500 km away. For the 90 tele-ultrasound consultations performed for the first 71 patients, 90% of the babies have been delivered, and outcome data have been received on all the pregnancies. All significant anomalies and diagnoses have been confirmed. The referring clinicians would have physically referred 24 of the 71 patients to Brisbane in the absence of telemedicine. A crude cost-benefit calculation suggests that the tele-ultrasound service resulted in a net saving of A$6340, and at the same time enabled almost four times the number of consultations to be carried out.
Resumo:
Abnormal left ventricular (LV) filling is common, but not universal, in hypertensive LV hypertrophy (LVH). We sought to elucidate the relative contributions of myocardial structural changes, loading and hypertrophy to LV dysfunction in 113 patients: 85 with hypertensive LVH and 28 controls without LVH and with normal filling. Patients with normal dobutamine stress echocardiography and no history of coronary artery disease were selected, in order to exclude a contribution from ischaemia or scar. Abnormal LV filling was identified in 65 LVH patients, based on Doppler measurement of transmitral filling and annular velocities. All patients underwent grey-scale and colour tissue Doppler imaging from three apical views, which were stored and analysed off line. Integrated backscatter (113) and strain rate imaging were used to detect changes in structure and function; average cyclic variation of 113, strain rate and peak systolic strain were calculated by averaging each segment. Calibrated 113 intensity, corrected for pericardial 113 intensity, was measured in the septum and posterior wall from the parasternal long-axis view. Patients with LVH differed significantly from controls with respect to all backscatter and strain parameters, irrespective of the presence or absence of abnormal LV filling. LVH patients with and without abnormal LV filling differed with regard to age, LV mass and incidence of diabetes mellitus, but also showed significant differences in cyclic variation (P < 0.01), calibrated 113 in the posterior wall (P < 0.05) and strain rate (P < 0.01), although blood pressure, heart rate and LV systolic function were similar. Multivariate logistic regression analysis demonstrated that age, LV mass index and calibrated IB in the posterior wall were independent determinants of abnormal LV filling in patients with LVH. Thus structural and functional abnormalities can be detected in hypertensive patients with LVH with and without abnormal LV filling. In addition to age and LVH, structural (not functional) abnormalities are likely to contribute to abnormal LV filling, and may be an early sign of LV damage. 113 is useful for the detection of myocardial abnormalities in patients with hypertensive LVH.
Resumo:
Objectives To assess the detection rate of congenital fetal malformations and specific problems related to routine ultrasound screening in women with pre-existing diabetes. Methods A retrospective study was carried out to assess the performance of routine ultrasound screening in women with pre-existing diabetes (Types 1 and 2) within a tertiary institution. The incidence, type and risk factors for congenital fetal malformations were determined. The detection rate of fetal anomalies for diabetic women was compared with that for the low-risk population. Factors affecting these detection rates were evaluated. Results During the study period, 12 169 low-risk pregnant women and 130 women with pre-existing diabetes had routine ultrasound screening performed within the institution. A total of 10 major anomalies (7.7%) and three minor anomalies (2.3%) were present in the fetuses of the diabetic women. Central nervous system and cardiovascular system anomalies accounted for 60% of the major anomalies. Peri-conceptional hemoglobin A 1 c of more than 9% was associated with a high prevalence of major anomalies (14311000). Women who had fetuses with major anomalies bad a significantly higher incidence of obesity (78% vs. 37%; P < 0.05). Ultrasound examination of these diabetic pregnancies showed high incidences of suboptimal image quality (37%), incomplete examinations, and repeat examinations (17%). Compared to the 'low-risk' non-diabetic population from the same institution, the relative risk for a major congenital anomaly among the diabetic women was 5.9-fold higher (95% confidence interval, 2.9-11.9). The detection rate for major fetal anomalies was significantly lower for diabetic women (30% vs. 73%; P < 0.01), and the mean body mass index for the diabetic group was significantly higher (29 vs. 23 kg/m(2); P < 0.001). Conclusion The incidence of congenital anomalies is higher in diabetic pregnancies. Unfortunately, the detection rate for fetal anomalies by antenatal ultrasound scan was significantly, worse than that for the low-risk population. This is likely to be related to the maternal body habitus and unsatisfactory examinations. Methods to overcome these difficulties are discussed.
Resumo:
We compared the quality of realtime fetal ultrasound images transmitted using ISDN and IP networks. Four experienced obstetric ultrasound specialists viewed standard recordings in a randomized trial and rated the appearance of 30 fetal anatomical landmarks, each on a seven-point scale. A total of 12 evaluations were performed for various combinations of bandwidths (128, 384 or 768 kbit/s) and networks (ISDN or IF). The intraobserver coefficient of variation was 2.9%, 5.0%, 12.7% and 14.7% for the four observers. The mean overall ratings by each of the four observers were 4.6, 4.8, 5.0 and 5.3, respectively (a rating of 4 indicated satisfactory visualization and 7 indicated as good as the original recording). Analysis of variance showed that there were no significant interobserver variations nor significant differences in the mean scores for the different types of videoconferencing machines used. The most significant variable affecting the mean score was the bandwidth used. For ISDN, the mean score was 3.7 at 128 kbit/s, which was significantly worse than the mean score of 4.9 at 384 kbit/s, which was in turn significantly worse than the mean score of 5.9 at 768 kbit/s. The mean score for transmission using IP was about 0.5 points lower than that using ISDN across all the different bandwidths, but the differences were not significant. It appears that IP transmission in a private (non-shared) network is an acceptable alternative to ISDN for fetal tele-ultrasound and one deserving further study.
Resumo:
To investigate the ability of ultrasonography to estimate musactivity, we measured architectural parameters (pennation angles, fascicle lengths, and muscle thickness) of several human muscles (tibialis anterior, biceps brachii, brachialis, transversus abdominis, obliquus internus abdominis, and obliquus externus abdominis) during isometric contractions of from 0 to 100% maximal voluntary contraction (MVC). Concurrently, electromyographic (EMG) activity was measured with surface (tibialis anterior only) or fine-wire electrodes. Most architectural parameters changed markedly with contractions up to 30% MVC but changed little at higher levels of contraction. Thus, ultrasound imaging can be used to detect low levels of muscle activity but cannot discriminate between moderate and strong contractions. Ultrasound measures could reliably detect changes in EMG of as little as 4% MVC (biceps muscle thickness), 5% MVC (brachialis muscle thickness), or 9% MVC (tibialis anterior pennation angle). They were generally less sensitive to changes in abdominal muscle activity, but it was possible to reliably detect contractions of 12% MVC in transversus abdominis (muscle length) and 22% MVC in obliquus internus (muscle thickness). Obliquus externus abdominis thickness did not change consistently with muscle contraction, so ultrasound measures of thickness cannot be used to detect activity of this muscle. Ultrasound imaging can thus provide a non-invasive method of detecting isometric muscle contractions of certain individual muscles.
Resumo:
Pectus excavatum is the most common congenital deformity of the anterior thoracic wall. The surgical correction of such deformity, using Nuss procedure, consists in the placement of a personalized convex prosthesis into sub-sternal position to correct the deformity. The aim of this work is the CT-scan substitution by ultrasound imaging for the pre-operative diagnosis and pre-modeling of the prosthesis, in order to avoid patient radiation exposure. To accomplish this, ultrasound images are acquired along an axial plane, followed by a rigid registration method to obtain the spatial transformation between subsequent images. These images are overlapped to reconstruct an axial plane equivalent to a CT-slice. A phantom was used to conduct preliminary experiments and the achieved results were compared with the corresponding CT-data, showing that the proposed methodology can be capable to create a valid approximation of the anterior thoracic wall, which can be used to model/bend the prosthesis
Resumo:
While fluoroscopy is still the most widely used imaging modality to guide cardiac interventions, the fusion of pre-operative Magnetic Resonance Imaging (MRI) with real-time intra-operative ultrasound (US) is rapidly gaining clinical acceptance as a viable, radiation-free alternative. In order to improve the detection of the left ventricular (LV) surface in 4D ultrasound, we propose to take advantage of the pre-operative MRI scans to extract a realistic geometrical model representing the patients cardiac anatomy. This could serve as prior information in the interventional setting, allowing to increase the accuracy of the anatomy extraction step in US data. We have made use of a real-time 3D segmentation framework used in the recent past to solve the LV segmentation problem in MR and US data independently and we take advantage of this common link to introduce the prior information as a soft penalty term in the ultrasound segmentation algorithm. We tested the proposed algorithm in a clinical dataset of 38 patients undergoing both MR and US scans. The introduction of the personalized shape prior improves the accuracy and robustness of the LV segmentation, as supported by the error reduction when compared to core lab manual segmentation of the same US sequences.
Resumo:
Background: Kidney stone is a major universal health problem, affecting 10% of the population worldwide. Percutaneous nephrolithotomy is a first-line and established procedure for disintegration and removal of renal stones. Its surgical success depends on the precise needle puncture of renal calyces, which remains the most challenging task for surgeons. This work describes and tests a new ultrasound based system to alert the surgeon when undesirable anatomical structures are in between the puncture path defined through a tracked needle. Methods: Two circular ultrasound transducers were built with a single 3.3-MHz piezoelectric ceramic PZT SN8, 25.4 mm of radius and resin-epoxy matching and backing layers. One matching layer was designed with a concave curvature to work as an acoustic lens with long focusing. The A-scan signals were filtered and processed to automatically detect reflected echoes. Results: The transducers were mapped in water tank and tested in a study involving 45 phantoms. Each phantom mimics different needle insertion trajectories with a percutaneous path length between 80 and 150 mm. Results showed that the beam cross-sectional area oscillates around the ceramics radius and it was possible to automatically detect echo signals in phantoms with length higher than 80 mm. Conclusions: This new solution may alert the surgeon about anatomical tissues changes during needle insertion, which may decrease the need of X-Ray radiation exposure and ultrasound image evaluation during percutaneous puncture.
Resumo:
Background: An accurate percutaneous puncture is essential for disintegration and removal of renal stones. Although this procedure has proven to be safe, some organs surrounding the renal target might be accidentally perforated. This work describes a new intraoperative framework where tracked surgical tools are superimposed within 4D ultrasound imaging for security assessment of the percutaneous puncture trajectory (PPT). Methods: A PPT is first generated from the skin puncture site towards an anatomical target, using the information retrieved by electromagnetic motion tracking sensors coupled to surgical tools. Then, 2D ultrasound images acquired with a tracked probe are used to reconstruct a 4D ultrasound around the PPT under GPU processing. Volume hole-filling was performed in different processing time intervals by a tri-linear interpolation method. At spaced time intervals, the volume of the anatomical structures was segmented to ascertain if any vital structure is in between PPT and might compromise the surgical success. To enhance the volume visualization of the reconstructed structures, different render transfer functions were used. Results: Real-time US volume reconstruction and rendering with more than 25 frames/s was only possible when rendering only three orthogonal slice views. When using the whole reconstructed volume one achieved 8-15 frames/s. 3 frames/s were reached when one introduce the segmentation and detection if some structure intersected the PPT. Conclusions: The proposed framework creates a virtual and intuitive platform that can be used to identify and validate a PPT to safely and accurately perform the puncture in percutaneous nephrolithotomy.
Resumo:
Liver steatosis is a common disease usually associated with social and genetic factors. Early detection and quantification is important since it can evolve to cirrhosis. In this paper, a new computer-aided diagnosis (CAD) system for steatosis classification, in a local and global basis, is presented. Bayes factor is computed from objective ultrasound textural features extracted from the liver parenchyma. The goal is to develop a CAD screening tool, to help in the steatosis detection. Results showed an accuracy of 93.33%, with a sensitivity of 94.59% and specificity of 92.11%, using the Bayes classifier. The proposed CAD system is a suitable graphical display for steatosis classification.
Resumo:
Liver steatosis is a common disease usually associated with social and genetic factors. Early detection and quantification is important since it can evolve to cirrhosis. Steatosis is usually a diffuse liver disease, since it is globally affected. However, steatosis can also be focal affecting only some foci difficult to discriminate. In both cases, steatosis is detected by laboratorial analysis and visual inspection of ultrasound images of the hepatic parenchyma. Liver biopsy is the most accurate diagnostic method but its invasive nature suggest the use of other non-invasive methods, while visual inspection of the ultrasound images is subjective and prone to error. In this paper a new Computer Aided Diagnosis (CAD) system for steatosis classification and analysis is presented, where the Bayes Factor, obatined from objective intensity and textural features extracted from US images of the liver, is computed in a local or global basis. The main goal is to provide the physician with an application to make it faster and accurate the diagnosis and quantification of steatosis, namely in a screening approach. The results showed an overall accuracy of 93.54% with a sensibility of 95.83% and 85.71% for normal and steatosis class, respectively. The proposed CAD system seemed suitable as a graphical display for steatosis classification and comparison with some of the most recent works in the literature is also presented.
Resumo:
PURPOSE: Fatty liver disease (FLD) is an increasing prevalent disease that can be reversed if detected early. Ultrasound is the safest and ubiquitous method for identifying FLD. Since expert sonographers are required to accurately interpret the liver ultrasound images, lack of the same will result in interobserver variability. For more objective interpretation, high accuracy, and quick second opinions, computer aided diagnostic (CAD) techniques may be exploited. The purpose of this work is to develop one such CAD technique for accurate classification of normal livers and abnormal livers affected by FLD. METHODS: In this paper, the authors present a CAD technique (called Symtosis) that uses a novel combination of significant features based on the texture, wavelet transform, and higher order spectra of the liver ultrasound images in various supervised learning-based classifiers in order to determine parameters that classify normal and FLD-affected abnormal livers. RESULTS: On evaluating the proposed technique on a database of 58 abnormal and 42 normal liver ultrasound images, the authors were able to achieve a high classification accuracy of 93.3% using the decision tree classifier. CONCLUSIONS: This high accuracy added to the completely automated classification procedure makes the authors' proposed technique highly suitable for clinical deployment and usage.
Resumo:
Chronic Liver Disease is a progressive, most of the time asymptomatic, and potentially fatal disease. In this paper, a semi-automatic procedure to stage this disease is proposed based on ultrasound liver images, clinical and laboratorial data. In the core of the algorithm two classifiers are used: a k nearest neighbor and a Support Vector Machine, with different kernels. The classifiers were trained with the proposed multi-modal feature set and the results obtained were compared with the laboratorial and clinical feature set. The results showed that using ultrasound based features, in association with laboratorial and clinical features, improve the classification accuracy. The support vector machine, polynomial kernel, outperformed the others classifiers in every class studied. For the Normal class we achieved 100% accuracy, for the chronic hepatitis with cirrhosis 73.08%, for compensated cirrhosis 59.26% and for decompensated cirrhosis 91.67%.
Resumo:
In this work the identification and diagnosis of various stages of chronic liver disease is addressed. The classification results of a support vector machine, a decision tree and a k-nearest neighbor classifier are compared. Ultrasound image intensity and textural features are jointly used with clinical and laboratorial data in the staging process. The classifiers training is performed by using a population of 97 patients at six different stages of chronic liver disease and a leave-one-out cross-validation strategy. The best results are obtained using the support vector machine with a radial-basis kernel, with 73.20% of overall accuracy. The good performance of the method is a promising indicator that it can be used, in a non invasive way, to provide reliable information about the chronic liver disease staging.