906 resultados para Ultra lightweight mirror
Resumo:
The emerging field of ecopsychology is marked by two theoretical concerns which can be seen as mirror images of each other. One is the concern with what humans need, psychologically, from the non-human natural world (e.g. Wolsko & Lindberg 2013). The other is what nature needs from us (e.g. Swim 2013). Ecocriticism has been exploring these questions for at least two decades, but ecocritical theory examines ways of reading texts rather than ways of writing them (Bate 2000; Buell 2001; Garrard 2012). Undertaking theoretically-informed “creative manoeuvres”, and reflecting and reporting on the results, is one way for practice-led researchers in the field of creative writing to progress the knowledge claims of our discipline. This paper describes an ecowriting practice experiment based on the premise that specific techniques of narrative fiction writing can deepen reader engagement with ecopsychology’s twin concerns, and help motivate ecological action. Exploring this premise is time-critical given the current environmental crisis (Rust & Totton 2012), and emerging evidence that contemporary modes of representing the non-human natural world fail to elicit activist responses (Crompton & Kasser 2009; Joffe 2008). In the practice experiment reported here, a unique reading experience has been constructed such that the reader encounters from two different perspectives, through two different novels, a single story of humans benefiting from non-destructive interactions with non-human nature. This paper argues that the two novels create a complex and intense relationship between reader and story which generates specific psychological effects, and ultimately demands an activist response.
Resumo:
WG-7 is a stream cipher based on WG stream cipher and has been designed by Luo et al. (2010). This cipher is designed for low cost and lightweight applications (RFID tags and mobile phones, for instance). This paper addresses cryptographic weaknesses of WG-7 stream cipher. We show that the key stream generated by WG-7 can be distinguished from a random sequence after knowing 213.5 keystream bits and with a negligible error probability. Also, we investigate the security of WG-7 against algebraic attacks. An algebraic key recovery attack on this cipher is proposed. The attack allows to recover both the internal state and the secret key with the time complexity about 2/27.
Resumo:
This thesis developed a new method for measuring extremely low amounts of organic and biological molecules, using Surface enhanced Raman Spectroscopy. This method has many potential applications, e.g. medical diagnosis, public health, food provenance, antidoping, forensics and homeland security. The method development used caffeine as the small molecule example, and erythropoietin (EPO) as the large molecule. This method is much more sensitive and specific than currently used methods; rapid, simple and cost effective. The method can be used to detect target molecules in beverages and biological fluids without the usual preparation steps.
Resumo:
We present a proof of concept for a novel nanosensor for the detection of ultra-trace amounts of bio-active molecules in complex matrices. The nanosensor is comprised of gold nanoparticles with an ultra-thin silica shell and antibody surface attachment, which allows for the immobilization and direct detection of bio-active molecules by surface enhanced Raman spectroscopy (SERS) without requiring a Raman label. The ultra-thin passive layer (~1.3 nm thickness) prevents competing molecules from binding non-selectively to the gold surface without compromising the signal enhancement. The antibodies attached on the surface of the nanoparticles selectively bind to the target molecule with high affinity. The interaction between the nanosensor and the target analyte result in conformational rearrangements of the antibody binding sites, leading to significant changes in the surface enhanced Raman spectra of the nanoparticles when compared to the spectra of the un-reacted nanoparticles. Nanosensors of this design targeting the bio-active compounds erythropoietin and caffeine were able to detect ultra-trace amounts the analyte to the lower quantification limits of 3.5×10−13 M and 1×10−9 M, respectively.
Resumo:
Theoretical accounts suggest that mirror neurons play a crucial role in social cognition. The current study used transcranial-magnetic stimulation (TMS) to investigate the association between mirror neuron activation and facialemotion processing, a fundamental aspect of social cognition, among healthy adults (n = 20). Facial emotion processing of static (but not dynamic) images correlated significantly with an enhanced motor response, proposed to reflect mirror neuron activation. These correlations did not appear to reflect general facial processing or pattern recognition, and provide support to current theoretical accounts linking the mirror neuron system to aspects of social cognition. We discuss the mechanism by which mirror neurons might facilitate facial emotion recognition.
Resumo:
Impairments in social cognitive functioning are well documented in schizophrenia, however the neural basis of these deficits is unclear. A recent explanatory model of social cognition centers upon the activity of mirror neurons, which are cortical brain cells that become active during both the performance and observation of behavior. Here, we test for the first time whether mirror neuron functioning is reduced in schizophrenia. Fifteen individuals with schizophrenia or schizoaffective disorder and fifteen healthy controls completed a transcranial magnetic stimulation (TMS) experiment designed to assess mirror neuron activation. While patients demonstrated no abnormalities in cortical excitability, motor facilitation during action observation, putatively reflecting mirror neuron activity, was reduced in schizophrenia. Dysfunction within the mirror neuron system may contribute to the pathophysiology of schizophrenia.
Resumo:
This paper presents an approach to mobile robot localization, place recognition and loop closure using a monostatic ultra-wide band (UWB) radar system. The UWB radar is a time-of-flight based range measurement sensor that transmits short pulses and receives reflected waves from objects in the environment. The main idea of the poposed localization method is to treat the received waveform as a signature of place. The resulting echo waveform is very complex and highly depends on the position of the sensor with respect to surrounding objects. On the other hand, the sensor receives similar waveforms from the same positions.Moreover, the directional characteristics of dipole antenna is almost omnidirectional. Therefore, we can localize the sensor position to find similar waveform from waveform database. This paper proposes a place recognitionmethod based on waveform matching, presents a number of experiments that illustrate the high positon estimation accuracy of our UWB radar-based localization system, and shows the resulting loop detection performance in a typical indoor office environment and a forest.
Resumo:
This paper describes a lightweight, modular and energy efficient robotic vehicle platform designed for broadacre agriculture - the Small Robotic Farm Vehicle (SRFV). The current trend in farming is towards increasingly large machines that optimise the individual farmer’s productivity. Instead, the SRFV is designed to promote the sustainable intensification of agriculture by allowing farmers to concentrate on more important farm management tasks. The robot has been designed with a user-centred approach which focuses the outcomes of the project on the needs of the key project stakeholders. In this way user and environmental considerations for broadacre farming have informed the vehicle platform configuration, locomotion, power requirements and chassis construction. The resultant design is a lightweight, modular four-wheeled differential steer vehicle incorporating custom twin in-hub electric drives with emergency brakes. The vehicle is designed for a balance between low soil impact, stability, energy efficiency and traction. The paper includes modelling of the robot’s dynamics during an emergency brake in order to determine the potential for tipping. The vehicle is powered by a selection of energy sources including rechargeable lithium batteries and petrol-electric generators.
Resumo:
This paper investigated the influence of nano-silica (NS) on the mechanical and transport properties of lightweight concrete (LWC). The resistance of LWC to water and chloride ions penetration was enhanced despite strength marginally increased. Water penetration depth, moisture sorptivity, chloride migration and diffusion coefficient was reduced by 23% and 49%, 23% and 10%, 5% and 0%, 22% and 12% compared to the two reference LWC mixes (pure cement and 60% slag blended cement), respectively with 1% NS. Such improvements were attributed to more compact microstructures because the micropore system was refined and the interface between aggregates and paste was enhanced.
Resumo:
The inspection of marine vessels is currently performed manually. Inspectors use tools (e.g. cameras and devices for non-destructive testing) to detect damaged areas, cracks, and corrosion in large cargo holds, tanks, and other parts of a ship. Due to the size and complex geometry of most ships, ship inspection is time-consuming and expensive. The EU-funded project INCASS develops concepts for a marine inspection robotic assistant system to improve and automate ship inspections. In this paper, we introduce our magnetic wall–climbing robot: Marine Inspection Robotic Assistant (MIRA). This semiautonomous lightweight system is able to climb a vessels steel frame to deliver on-line visual inspection data. In addition, we describe the design of the robot and its building subsystems as well as its hardware and software components.
Resumo:
A facile and sensitive surface-enhanced Raman scattering substrate was prepared by controlled potentiostatic deposition of a closely packed single layer of gold nanostructures (AuNS) over a flat gold (pAu) platform. The nanometer scale inter-particle distance between the particles resulted in high population of ‘hot spots’ which enormously enhanced the scattered Raman photons. A renewed methodology was followed to precisely quantify the SERS substrate enhancement factor (SSEF) and it was estimated to be (2.2 ± 0.17) × 105. The reproducibility of the SERS signal acquired by the developed substrate was tested by establishing the relative standard deviation (RSD) of 150 repeated measurements from various locations on the substrate surface. A low RSD of 4.37 confirmed the homogeneity of the developed substrate. The sensitivity of pAu/AuNS was proven by determining 100 fM 2,4,6-trinitrotoluene (TNT) comfortably. As a proof of concept on the potential of the new pAu/AuNS substrate in field analysis, TNT in soil and water matrices was selectively detected after forming a Meisenheimer complex with cysteamine.
Resumo:
Background We examined pituitary volume before the onset of psychosis in subjects who were at ultra-high risk (UHR) for developing psychosis. Methods Pituitary volume was measured on 1.5-mm, coronal, 1.5-T magnetic resonance images in 94 UHR subjects recruited from admissions to the Personal Assessment and Crisis Evaluation Clinic in Melbourne, Australia and in 49 healthy control subjects. The UHR subjects were scanned at baseline and were followed clinically for a minimum of 1 year to detect transition to psychosis. Results Within the UHR group, a larger baseline pituitary volume was a significant predictor of future transition to psychosis. The UHR subjects who later went on to develop psychosis (UHR-P, n = 31) had a significantly larger (+12%; p = .001) baseline pituitary volume compared with UHR subjects who did not go on to develop psychosis (UHR-NP, n = 63). The survival analysis conducted by Cox regression showed that the risk of developing psychosis during the follow-up increased by 20% for every 10% increase in baseline pituitary volume (p = .002). Baseline pituitary volume of the UHR-NP subjects was smaller not only compared with UHR-P (as described above) but also compared with control subjects (−6%; p = .032). Conclusions The phase before the onset of psychosis is associated with a larger pituitary volume, suggesting activation of the HPA axis.
Resumo:
Antioxidant requirements have neither been defined for endurance nor been defined for ultra-endurance athletes. To verify whether an acute bout of ultra-endurance exercise modifies the need for nutritive antioxidants, we aimed (1) to investigate the changes of endogenous and exogenous antioxidants in response to an Ironman triathlon; (2) to particularise the relevance of antioxidant responses to the indices of oxidatively damaged blood lipids, blood cell compounds and lymphocyte DNA and (3) to examine whether potential time-points of increased susceptibility to oxidative damage are associated with alterations in the antioxidant status. Blood that was collected from forty-two well-trained male athletes 2 d pre-race, immediately post-race, and 1, 5 and 19 d later was sampled. The key findings of the present study are as follows: (1) Immediately post-race, vitamin C, alpha-tocopherol, and levels of the Trolox equivalent antioxidant capacity, the ferric reducing ability of plasma and the oxygen radical absorbance capacity (ORAC) assays increased significantly. Exercise-induced changes in the plasma antioxidant capacity were associated with changes in uric acid, bilirubin and vitamin C. (2) Significant inverse correlations between ORAC levels and indices of oxidatively damaged DNA immediately and 1 d post-race suggest a protective role of the acute antioxidant responses in DNA stability. (3) Significant decreases in carotenoids and gamma-tocopherol 1 d post-race indicate that the antioxidant intake during the first 24 h of recovery following an acute ultra-endurance exercise requires specific attention. Furthermore, the present study illustrates the importance of a diversified and well-balanced diet to maintain a physiological antioxidant status in ultra-endurance athletes in reference to recommendations.
Resumo:
Also physical exercise in general is accepted to be protective, acute and strenuous exercise has been shown to induce oxidative stress. Enhanced formation of free radicals leads to oxidation of macromolecules and to DNA damage. On the other hand ultra-endurance events which require strenuous exercise are very popular and the number of participants is continuously increasing worldwide. Since only few data exists on Ironman triathletes, who are prototypes of ultra-endurance athletes, this study was aimed at assessing the risk of oxidative stress and DNA damage after finishing a triathlon and to predict a possible health risk. Blood samples of 42 male athletes were taken 2 days before, within 20 min after the race, 1, 5 and 19 days post-race. Oxidative stress marker increased only moderately after the race and returned to baseline after 5 days. Marker of DNA damage measured by the SCGE assay with and without restriction enzymes as well as by the sister chromatid exchange assay did either show no change or deceased within the first day after the race. Due to intake during the race and the release by the cells plasma concentrations of vitamin C and α-tocopherol increased after the event and returned to baseline 1 day after. This study indicates that despite a temporary increase in some oxidative stress markers, there is no persistent oxidative stress and no DNA damage in response to an Ironman triathlon in trained athletes, mainly due to an appropriate antioxidant intake and general protective alterations in the antioxidant defence system.
Resumo:
This thesis presents the design process and the prototyping of a lightweight, modular robotic vehicle for the sustainable intensification of broadacre agriculture. Achieved by the joint operation of multiple autonomous vehicles to improve energy consumption, reduce labour, and increase efficiency in the application of inputs for the management of crops. The Small Robotic Farm Vehicle (SRFV) is a lightweight and energy efficient robotic vehicle with a configurable, modular design. It is capable of undertaking a range of agricultural tasks, including fertilising and weed management through mechanical intervention and precision spraying, whilst being more than an order of magnitude lower in weight than existing broadacre agricultural equipment.