959 resultados para UV-visible absorption


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plants resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds ( = 280-400m), suggesting that besides the biological activities of those secondary metabolites, they also play a relevant role for the discrimination and classification of that complex matrix through bioinformatics tools. Finally, a series of machine learning approaches, e.g., partial least square-discriminant analysis (PLS-DA), k-Nearest Neighbors (kNN), and Decision Trees showed to be complementary to PCA and HCA, allowing to obtain relevant information as to the sample discrimination.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação de mestrado em Química Medicinal

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Se desarrollaron catalizadores de TiO2 dopados con nitrógeno para conseguir actividad fotocatalítica bajo irradiación visible. En este trabajo se reporta la síntesis de TiO2-N, usando urea y nitrato de amonio (NH4NO3) como precursores de nitrógeno, tanto a partir de un TiO2 generado in situ (método sol-gel) como mediante la modificación de un TiO2 comercial. Así mismo, se varió la concentración de urea para encontrar el valor óptimo de nitrógeno, lo cual se comprobó mediante la oxidación fotocatalítica de ácido oxálico bajo irradiación con luz visible. Los materiales sintetizados se caracterizaron por medio de análisis elemental, y por reflectancia difusa UV-visible, encontrándose nitrógeno en todas las muestras, y un valor del ancho de banda prohibida en el rango 2-2,8 eV. Lamentablemente, se detectó una pérdida de nitrógeno cuando los fotocatalizadores eran reutilizados, lo cual causó una disminución de su actividad después de cada reacción, ya sea en presencia de oxígeno, o en ausencia de éste mientras se generaba hidrógeno. Entre los dopantes investigados el NH4NO3 mostro una mejor eficiencia en la producción de hidrógeno. Además, los resultados experimentales revelaron claramente que la deposición de platino en la superficie de los catalizadores TiO2-N desempeña un papel fundamental en el aumento de la generación de hidrógeno. Sin embargo, esta mejora dependía claramente del método de preparación de las muestras, obteniéndose mejores resultados con el TiO2-p25.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multicomponent ( Al2O3, CaO, SiO2, MgO) calcium aluminate-based glasses containing Nd3+ were prepared in order to evaluate their possibilities as laser host materials. The refractive index, UV-visible-near IR absorption spectrum, IR and visible luminescence spectra, and fluorescence decay time were measured. Judd-Ofelt model was used to obtain experimental intensity parameters ( omega2, omega4 and omega6), emission cross-section, radiative lifetimes, emission branching ratios and quantum efficiency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dilutions of methylmetacrylate ranging between 1 and 50 ppm were obtained from a stock solution of 1 ml of monomer in 100 ml of deionised water, and were analyzed by an absorption spectrophotometer in the UV-visible. Absorbance values were used to develop a calibration model based on the PLS, with the aim to determine new sample concentrations. The number of latent variables used was 6, with the standard errors of calibration and prediction found to be 0,048 ml/100 ml and 0,058 ml/100 ml. The calibration model was successfully used to calculate the concentration of monomer released in water, where complete dentures were kept for one hour after polymerization.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The optical, mechanical, and microstructural properties of MgF2 single layers grown by ion beam sputtering have been investigated by spectrophotometric measurements, film stress characterization, x-ray photoelectron spectroscopy (XPS), x-ray diffraction, and transmission electron microscopy. The deposition conditions, using fluorine reactive gas or not, have been found to greatly influence the optical absorption and the stress of the films as well as their microstructure. The layers grown with fluorine compensation exhibit a regular columnar microstructure and an UV-optical absorption which can be very low, either as deposited or after thermal annealings at very low temperatures. On the contrary, layers grown without fluorine compensation exhibit a less regular microstructure and a high ultraviolet absorption which is particularly hard to cure. On the basis of calculations, it is shown that F centers are responsible for this absorption, whereas all the films were found to be stoichiometric, in the limit of the XPS sensitivity. On the basis of external data taken from literature, our experimental curves are analyzed, so we propose possible diffusion mechanisms which could explain the behaviors of the coatings.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Stratospheric ozone can be measured accurately using a limb scatter remote sensing technique at the UV-visible spectral region of solar light. The advantages of this technique includes a good vertical resolution and a good daytime coverage of the measurements. In addition to ozone, UV-visible limb scatter measurements contain information about NO2, NO3, OClO, BrO and aerosols. There are currently several satellite instruments continuously scanning the atmosphere and measuring the UVvisible region of the spectrum, e.g., the Optical Spectrograph and Infrared Imager System (OSIRIS) launched on the Odin satellite in February 2001, and the Scanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY (SCIAMACHY) launched on Envisat in March 2002. Envisat also carries the Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument, which also measures limb-scattered sunlight under bright limb occultation conditions. These conditions occur during daytime occultation measurements. The global coverage of the satellite measurements is far better than any other ozone measurement technique, but still the measurements are sparse in the spatial domain. Measurements are also repeated relatively rarely over a certain area, and the composition of the Earth’s atmosphere changes dynamically. Assimilation methods are therefore needed in order to combine the information of the measurements with the atmospheric model. In recent years, the focus of assimilation algorithm research has turned towards filtering methods. The traditional Extended Kalman filter (EKF) method takes into account not only the uncertainty of the measurements, but also the uncertainty of the evolution model of the system. However, the computational cost of full blown EKF increases rapidly as the number of the model parameters increases. Therefore the EKF method cannot be applied directly to the stratospheric ozone assimilation problem. The work in this thesis is devoted to the development of inversion methods for satellite instruments and the development of assimilation methods used with atmospheric models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present work, the development of a method based on the coupling of flow analysis (FA), hydride generation (HG), and derivative molecular absorption spectrophotometry (D-EAM) in gas phase (GP), is described in order to determine total antimony in antileishmanial products. Second derivative order (D²224nm) of the absorption spectrum (190 - 300 nm) is utilized as measurement criterion. Each one of the parameters involved in the development of the proposed method was examined and optimized. The utilization of the EAM in GP as detection system in a continuous mode instead of atomic absorption spectrometry represents the great potential of the analytic proposal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Interactions of cationic dye methylene blue (MB) with clay particles in aqueous suspension have been extensively studied. As already known, the number of natural negative charges on the clay modifies significantly the particle sizes dispersed in water and therefore the nature of the interaction with the dye. This work evaluated with UV-Vis spectroscopy method how the clay particle sizes weighted on the adsorption and rearrangement of the dye molecules in aqueous system. The results obtained from light-scattering measurements confirmed that larger particles are found in suspensions containing the high-charged clays as the visible absorption band related to the MB aggregates (570 nm) on these suspensions prevailed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper reports on a modification of the procedures originally described in the French Pharmacopoeia for the UV-visible spectrometric analysis of flavonoids, and proposes a validation of the method and its application in the determination of total flavonoids from sugarcane (Saccharum officinarum) leaves and vinasse. An analysis of precision and accuracy revealed a low relative standard deviation (< 5.0%) and a good recovery percentages (99.79 and 98.34%). A comparison of the spectrometric results against those obtained by high performance liquid chromatography (HPLC-UV) demonstrated complete compatibility between the modified French Pharmacopoeia (spectrometric) and HPLC-UV methods

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Le ligand nacnacxylH (xyl = C6Me2H3) et les ligands dikétimines N-alkyle substitués (nacnacCH(Me)PhH, nacnacBnH and nacnaciPrH) ont été préparés avec de bons rendements à l’exception du nacnaciPrH (23%) en utilisant un protocole en une étape et à l’aide d’un montage Dean-Stark. La réaction du S,S-nacnacCH(Me)PhH et du nacnacBnH avec le nBuLi dans le THF conduit au S,S-nacnacCH(Me)PhLi(THF) et au nacnacBnLi(THF). Les tentatives de bromation de ces composés par le N-bromosuccinimide conduisent plutôt aux ligands S,S-succnacnacCH(Me)PhH et succnacnacBnH (succ = succinimido) substitués par un groupement succinimido sur le carbone  La chloration par le N-chlorosuccinimide conduit au produit désiré, mais avec des impuretés. La réaction de ces ligands avec le CuOtBu (ou bien MesCu, où Mes = C6Me3H2, et une quantité catalytique de CuOtBu) en présence de bases de Lewis donne les (nacnacxylCu)2(-toluène), nacnacxylCuCNC6H3(Me)2, nacnacCH(Me)PhCuL (L = PPh3, PMe3, CNC6H3(Me)2, DMAP, lutidine, Py, MeCN), nacnacBnCuL (L = PPh3, CNC6H3(Me)2, styrène, trans-stilbene, phenylvinylether, acrylonitrile, diphenylacetylène), nacnaciPrCuL (L = PPh3, CNC6H3(Me)2, MeCN) et le succnacnacCH(Me)PhCuL (PPh3, CNC6H3(Me)2, pyridine). Tous ces complexes sont jaunes et sensibles à l’air et à l’humidité. En l’absence de fortes bases de Lewis, on n’observe pas de réaction entre les précurseurs de cuivre et les ligands N-alkyle substitués. Les études RMN des complexes dans le C6D6 ne présentent pas de complexe de toluène mais un mélange à l’équilibre du (nacnacxylCu)2(-C6D6) et nacnacxylCu(C6D6) dans une proportion de 2 pour 1. Alors que l’addition de plus de cinquante équivalents soit de THF, soit de toluène n’induit aucun changement des spectres RMN, l’addition de 2 équivalents de MeCN conduit instantanément au complexe nacnacxylCu(MeCN). De plus, le (nacnacxylylCu)2(-C6D6) ne se coordone ni ne réagit avec le N2O, même après avoir été chauffé à 60°C pendant treize jours. En présence de DPA (diphenylacétylène), la réaction du nacnacBnH avec le CuOtBu conduit au dimère ponté (nacnacBnCu)2(µ-DPA). L’addition d’un excès de DPA (10-12 équivalents) transforme le dimère ponté en complexe lié en position terminale nacnacBnCuDPA. Les nacnacRH (R = CH(Me)Ph et i-Pr) ne forment pas de complexe ni avec les oléfines ni avec le DPA. Une réactivité similaire a été observée avec les complexes de nacnacCH(Me)PhCu(NCMe) et nacnaci-PrCu(NCMe). Tandis que le complexe lié en position terminale par MeCN a été isolé et caractérisé, l’équilibre en solution nous laisse suspecter la formation d’un complexe d’acétonitrile ponté. Des études de réactivité comparatives ont été menées sur quelques complexes de cuivre. La Morpholine ne réagit pas avec le nacnacBnCu(acrylonitrile) contrairement à l’acrylonitrile libre. L’expérience de l’échange d’oléfine montre que l’acrylonitrile (une oléfine électro-attractrice) se lie plus fortement que les autres oléfines, mettant ainsi en évidence l’importance de la rétrodonation  face à la donation La rétrodonation est cependant faible comparée aux autres complexes de styrène structurellement caractérisés. Les complexes nacnacCH(Me)PhCuL (L = PPh3 et MeCN) ont été employés dans la cyclopropanation catalytique du styrène et dans l’addition conjuguée du ZnEt2 sur la 2-cyclohexénone, mais les résultats indiquent que le ligand dikétimine est éliminé avant son entrée dans le cycle catalytique. Par conséquent, il n’y a pas d’induction chirale. Les complexes tétra coordinées de cuivre avec les nacnacRCu(phen) (R = Bn, CH(Me)Ph et Phen = 1,10-phenanthroline, 2-Mes-1,10-phenanthroline, 2,9-dimethyl-1,10-phenanthroline (dmp) et 2,9-diphenyl-1,10-phenanthroline (dpp)) ont été synthétisés. Ces complexes sont d’une intense couleur bleue et des interactions d’empilement entre l’un des cycles phényle des ligands nacnac et la phénanthroline ont été observées dans les structures à l’état solide. Les mesures en absorption UV-visible ont été effectuées dans le toluène et les bandes MLCT sont déplacées vers le rouge par rapport à celles des complexes de cuivre et bisphénanthroline. Tous ces composés émettent à l’état solide mais les complexes 1,10-phenanthroline et 2-Mes-1,10-phenanthroline n’émettent pas en solution. Pour renforcer les interactions d’empilement , les nouveaux ligands nacnacRH (R = CH2C6H2(OMe)3, CH2C6F5) et leurs complexes de cuivre respectifs ont été préparés avec du dmp et dpp. Afin de permettre la comparaison, le nacnaciBuCu(dmp) a été synthétisé. Alors que les complexes dmp montrent une augmentation des interactions intramoléculaires - avec les substituants phényle du ligand dikétimine et de la phénanthroline, les complexes dpp ne révèlent pas de telles interactions. Les complexes perfluorés montrent, en absorption et en émission, un déplacement significatif vers le bleu, alors que les complexes substitués par un groupements isobutyle présentent des transitions déplacées vers le rouge. Alors que les intensités de luminescence et les durées de vie sont faibles, les déplacements réduits de Stokes et les pics étroits de luminescence comparables indiquent une réduction des distorsions de l’état excité.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis is divided in to 9 chapters and deals with the modification of TiO2 for various applications include photocatalysis, thermal reaction, photovoltaics and non-linear optics. Chapter 1 involves a brief introduction of the topic of study. An introduction to the applications of modified titania systems in various fields are discussed concisely. Scope and objectives of the present work are also discussed in this chapter. Chapter 2 explains the strategy adopted for the synthesis of metal, nonmetal co-doped TiO2 systems. Hydrothermal technique was employed for the preparation of the co-doped TiO2 system, where Ti[OCH(CH3)2]4, urea and metal nitrates were used as the sources for TiO2, N and metals respectively. In all the co-doped systems, urea to Ti[OCH(CH3)2]4 was taken in a 1:1 molar ratio and varied the concentration of metals. Five different co-doped catalytic systems and for each catalysts, three versions were prepared by varying the concentration of metals. A brief explanation of physico-chemical techniques used for the characterization of the material was also presented in this chapter. This includes X-ray Diffraction (XRD), Raman Spectroscopy, FTIR analysis, Thermo Gravimetric Analysis, Energy Dispersive X-ray Analysis (EDX), Scanning Electron Microscopy(SEM), UV-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS), Transmission Electron Microscopy (TEM), BET Surface Area Measurements and X-ray Photoelectron Spectroscopy (XPS). Chapter 3 contains the results and discussion of characterization techniques used for analyzing the prepared systems. Characterization is an inevitable part of materials research. Determination of physico-chemical properties of the prepared materials using suitable characterization techniques is very crucial to find its exact field of application. It is clear from the XRD pattern that photocatalytically active anatase phase dominates in the calcined samples with peaks at 2θ values around 25.4°, 38°, 48.1°, 55.2° and 62.7° corresponding to (101), (004), (200), (211) and (204) crystal planes (JCPDS 21-1272) respectively. But in the case of Pr-N-Ti sample, a new peak was observed at 2θ = 30.8° corresponding to the (121) plane of the polymorph brookite. There are no visible peaks corresponding to dopants, which may be due to their low concentration or it is an indication of the better dispersion of impurities in the TiO2. Crystallite size of the sample was calculated from Scherrer equation byusing full width at half maximum (FWHM) of the (101) peak of the anatase phase. Crystallite size of all the co-doped TiO2 was found to be lower than that of bare TiO2 which indicates that the doping of metal ions having higher ionic radius into the lattice of TiO2 causes some lattice distortion which suppress the growth of TiO2 nanoparticles. The structural identity of the prepared system obtained from XRD pattern is further confirmed by Raman spectra measurements. Anatase has six Raman active modes. Band gap of the co-doped system was calculated using Kubelka-Munk equation and that was found to be lower than pure TiO2. Stability of the prepared systems was understood from thermo gravimetric analysis. FT-IR was performed to understand the functional groups as well as to study the surface changes occurred during modification. EDX was used to determine the impurities present in the system. The EDX spectra of all the co-doped samples show signals directly related to the dopants. Spectra of all the co-doped systems contain O and Ti as the main components with low concentrations of doped elements. Morphologies of the prepared systems were obtained from SEM and TEM analysis. Average particle size of the systems was drawn from histogram data. Electronic structures of the samples were identified perfectly from XPS measurements. Chapter 4 describes the photocatalytic degradation of herbicides Atrazine and Metolachlor using metal, non-metal co-doped titania systems. The percentage of degradation was analyzed by HPLC technique. Parameters such as effect of different catalysts, effect of time, effect of catalysts amount and reusability studies were discussed. Chapter 5 deals with the photo-oxidation of some anthracene derivatives by co-doped catalytic systems. These anthracene derivatives come underthe category of polycyclic aromatic hydrocarbons (PAH). Due to the presence of stable benzene rings, most of the PAH show strong inhibition towards biological degradation and the common methods employed for their removal. According to environmental protection agency, most of the PAH are highly toxic in nature. TiO2 photochemistry has been extensively investigated as a method for the catalytic conversion of such organic compounds, highlighting the potential of thereof in the green chemistry. There are actually two methods for the removal of pollutants from the ecosystem. Complete mineralization is the one way to remove pollutants. Conversion of toxic compounds to another compound having toxicity less than the initial starting compound is the second way. Here in this chapter, we are concentrating on the second aspect. The catalysts used were Gd(1wt%)-N-Ti, Pd(1wt%)-N-Ti and Ag(1wt%)-N-Ti. Here we were very successfully converted all the PAH to anthraquinone, a compound having diverse applications in industrial as well as medical fields. Substitution of 10th position of desired PAH by phenyl ring reduces the feasibility of photo reaction and produced 9-hydroxy 9-phenyl anthrone (9H9PA) as an intermediate species. The products were separated and purified by column chromatography using 70:30 hexane/DCM mixtures as the mobile phase and the resultant products were characterized thoroughly by 1H NMR, IR spectroscopy and GCMS analysis. Chapter 6 elucidates the heterogeneous Suzuki coupling reaction by Cu/Pd bimetallic supported on TiO2. Sol-Gel followed by impregnation method was adopted for the synthesis of Cu/Pd-TiO2. The prepared system was characterized by XRD, TG-DTG, SEM, EDX, BET Surface area and XPS. The product was separated and purified by column chromatography using hexane as the mobile phase. Maximum isolated yield of biphenyl of around72% was obtained in DMF using Cu(2wt%)-Pd(4wt%)-Ti as the catalyst. In this reaction, effective solvent, base and catalyst were found to be DMF, K2CO3 and Cu(2wt%)-Pd(4wt%)-Ti respectively. Chapter 7 gives an idea about the photovoltaic (PV) applications of TiO2 based thin films. Due to energy crisis, the whole world is looking for a new sustainable energy source. Harnessing solar energy is one of the most promising ways to tackle this issue. The present dominant photovoltaic (PV) technologies are based on inorganic materials. But the high material, low power conversion efficiency and manufacturing cost limits its popularization. A lot of research has been conducted towards the development of low-cost PV technologies, of which organic photovoltaic (OPV) devices are one of the promising. Here two TiO2 thin films having different thickness were prepared by spin coating technique. The prepared films were characterized by XRD, AFM and conductivity measurements. The thickness of the films was measured by Stylus Profiler. This chapter mainly concentrated on the fabrication of an inverted hetero junction solar cell using conducting polymer MEH-PPV as photo active layer. Here TiO2 was used as the electron transport layer. Thin films of MEH-PPV were also prepared using spin coating technique. Two fullerene derivatives such as PCBM and ICBA were introduced into the device in order to improve the power conversion efficiency. Effective charge transfer between the conducting polymer and ICBA were understood from fluorescence quenching studies. The fabricated Inverted hetero junction exhibited maximum power conversion efficiency of 0.22% with ICBA as the acceptor molecule. Chapter 8 narrates the third order order nonlinear optical properties of bare and noble metal modified TiO2 thin films. Thin films were fabricatedby spray pyrolysis technique. Sol-Gel derived Ti[OCH(CH3)2]4 in CH3CH2OH/CH3COOH was used as the precursor for TiO2. The precursors used for Au, Ag and Pd were the aqueous solutions of HAuCl4, AgNO3 and Pd(NO3)2 respectively. The prepared films were characterized by XRD, SEM and EDX. The nonlinear optical properties of the prepared materials were investigated by Z-Scan technique comprising of Nd-YAG laser (532 nm,7 ns and10 Hz). The non-linear coefficients were obtained by fitting the experimental Z-Scan plot with the theoretical plots. Nonlinear absorption is a phenomenon defined as a nonlinear change (increase or decrease) in absorption with increasing of intensity. This can be mainly divided into two types: saturable absorption (SA) and reverse saturable absorption (RSA). Depending on the pump intensity and on the absorption cross- section at the excitation wavelength, most molecules show non- linear absorption. With increasing intensity, if the excited states show saturation owing to their long lifetimes, the transmission will show SA characteristics. Here absorption decreases with increase of intensity. If, however, the excited state has strong absorption compared with that of the ground state, the transmission will show RSA characteristics. Here in our work most of the materials show SA behavior and some materials exhibited RSA behavior. Both these properties purely depend on the nature of the materials and alignment of energy states within them. Both these SA and RSA have got immense applications in electronic devices. The important results obtained from various studies are presented in chapter 9.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Novel macrocyclic receptors which bind electron-donor aromatic substrates via π-stacking donor- acceptor interactions are obtained by cyclo-imidization of an amine-functionalized arylether-sulfone with pyromellitic- and 1,4,5,8-naphthalene-tetracarboxylic dianhydrides. These macrocycles complex with a wide variety of π-donor substrates including tetrathiafulvalene, naphthalene, anthracene, pyrene, perylene, and functional derivatives of these polycyclic hydrocarbons. The resulting supramolecular assemblies range from simple 1:1 complexes, to [2]- and [3]-pseudorotaxanes, and even (as a result of crystallographic disorder) an apparent polyrotaxane. Direct, five-component self-assembly of a metal-centred [3]pseudorotaxane is also observed, on complexation of a macrocyclic ether-imide with 8-hydroxyquinoline in the presence of palladium(II) ions. Binding studies in solution were carried out by 1H NMR and UV-visible spectroscopy, and the stoichiometries of binding were confirmed by Job plots based on charge-transfer absorption bands. The highest association constants are found for strong π-donor guests with large surface-areas, notably perylene and 1-hydroxypyrene, for which Ka values of 1.4 x 103 and 2.3 x 103 M-1 respectively are found. Single crystal X-ray analyses of the receptors and their derived complexes reveal large, induced-fit distortions of the macrocyclic frameworks as a result of complexation. These structures provide compelling evidence for the existence of strong, attractive forces between the electronically-complementary aromatic π-systems of host and guest.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The lowest absorption band of fac-[Re(Cl)(CO)(3)(5-NO2-phen)] encompasses two close-lying MLCT transitions. The lower one is directed to LUMO, which is heavily localized on the NO2 group. The UV-vis absorption spectrum is well accounted for by TD-DFT (G03/PBEPBE1/CPCM), provided that the solvent, MeCN, is included in the calculations. Near-UV excitation of fac-[Re(Cl)(CO)(3)(5-NO2-phen)] populates a triplet metal to ligand charge-transfer excited state, (MLCT)-M-3, that was characterized by picosecond time-resolved IR spectroscopy. Large positive shifts of the v(CO) bands upon excitation (+70 cm(-1) for the A'(1) band) signify a very large charge separation between the Re(Cl)(CO)3 unit and the 5-NO2-phen ligand. Details of the excited-state character are revealed by TD-DFT calculated changes of electron density distribution. Experimental excited-state v(CO) wavenumbers agree well with those calculated by DFT. The (MLCT)-M-3 state decays with a ca. 10 ps lifetime (in MeCN) into another transient species, that was identified by TRIR and TD-DFT calculations as an intraligand (3)n pi* excited state, whereby the electron density is excited from the NO2 oxygen lone pairs to the pi* system of 5-NO2-phen. This state is short-lived, decaying to the ground state with a similar to 30 ps lifetime. The presence of an n pi* state seems to be the main factor responsible for the lack of emission and the very short lifetimes of 3 MLCT states seen in all d(6)-metal complexes of nitro-polypyridyl ligands. Localization of the excited electron density in the lowest (MLCT)-M-3 states parallels localization of the extra electron in the reduced state that is characterized by a very small negative shift of the v(CO) IR bands (-6 cm(-1) for A'(1)) but a large downward shift of the v(s)(NO2) IR band. The Re-Cl bond is unusually stable toward reduction, whereas the Cl ligand is readily substituted upon oxidation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Barium molybdate (BaMoO(4)) powders were synthesized by the co-precipitation method and processed in microwave-hydrothermal at 140 degrees C for different times. These powders were characterized by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman), Fourier transform infrared (FT-IR), ultraviolet-visible (UV-vis) absorption spectroscopies and photoluminescence (PL) measurements. XRD patterns and FT-Raman spectra showed that these powders present a scheelite-type tetragonal structure without the presence of deleterious phases. FT-IR spectra exhibited a large absorption band situated at around 850.4 cm(-1), which is associated to the Mo-O antisymmetric stretching vibrations into the [MoO(4)] clusters. UV-vis absorption spectra indicated a reduction in the intermediary energy levels within band gap with the processing time evolution. First-principles quantum mechanical calculations based on the density functional theory were employed in order to understand the electronic structure (band structure and density of states) of this material. The powders when excited with different wavelengths (350 nm and 488 nm) presented variations. This phenomenon was explained through a model based in the presence of intermediary energy levels (deep and shallow holes) within the band gap. (C) 2009 Elsevier B.V. All rights reserved.