85 resultados para U5 snRNP


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Defective-interfering viruses are known to modulate virus pathogenicity. We describe conditionally replicating HIV-1 (crHIV) vectors that interfere with wild-type HIV-1 (wt-HIV) replication and spread. crHIV vectors are defective-interfering HIV genomes that do not encode viral proteins and replicate only in the presence of wt-HIV helper virus. In cells that contain both wt-HIV and crHIV genomes, the latter are shown to have a selective advantage for packaging into progeny virions because they contain ribozymes that cleave wt-HIV RNA but not crHIV RNA. A crHIV vector containing a triple anti-U5 ribozyme significantly interferes with wt-HIV replication and spread. crHIV vectors are also shown to undergo the full viral replicative cycle after complementation with wt-HIV helper-virus. The application of defective interfering crHIV vectors may result in competition with wt-HIVs and decrease pathogenic viral loads in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Initiation of minus (-) strand DNA synthesis was examined on templates containing R, U5, and primer-binding site regions of the human immunodeficiency virus type 1 (HIV-1), feline immunodeficiency virus (FIV), and equine infectious anemia virus (EIAV) genomic RNA. DNA synthesis was initiated from (i) an oligoribonucleotide complementary to the primer-binding sites, (ii) synthetic tRNA(3Lys), and (iii) natural tRNA(3Lys), by the reverse transcriptases of HIV-1, FIV, EIAV, simian immunodeficiency virus, HIV type 2 (HIV-2), Moloney murine leukemia virus, and avian myeloblastosis virus. All enzymes used an oligonucleotide on wild-type HIV-1 RNA, whereas only a limited number initiated (-) strand DNA synthesis from either tRNA(3Lys). In contrast, all enzymes supported efficient tRNA(3Lys)-primed (-) strand DNA synthesis on the genomes of FIV and EIAV. This may be in part attributable to the observation that the U5-inverted repeat stem-loop of the EIAV and FIV genomes lacks an A-rich loop shown with HIV-1 to interact with the U-rich tRNA anticodon loop. Deletion of this loop in HIV-1 RNA, or disrupting a critical loop-loop complex by tRNA(3Lys) extended by 9 nt, restored synthesis of HIV-1 (-) strand DNA from primer tRNA(3Lys) by all enzymes. Thus, divergent evolution of lentiviruses may have resulted in different mechanisms to use the same host tRNA for initiation of reverse transcription.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously shown that specific nuclear pre-mRNA transcripts and their splicing products, as well as the general population of nuclear poly(A)+ RNA, are packaged in large nuclear ribonucleoprotein (InRNP) particles that sediment at the 200S region in sucrose gradients. The InRNP particles contain all uridine-rich small nuclear ribonucleoprotein complexes required for pre-mRNA splicing, as well as protein splicing factors. In this paper we show that all of the phosphorylated, mAb 104 detectable, Ser/Arg-rich essential splicing factors (SR proteins) in the nucleoplasm are integral components of the InRNP particles, whereas only part of the essential splicing factor U2AF65 (U2 snRNP auxiliary factor) and the polypyrimidine tract binding protein (PTB) are associated with these particles. This finding suggests a limiting role for SR proteins in the assembly of the InRNP particles. We further show that the structural integrity of InRNP particles is sensitive to variations in the phosphorylation levels of the SR proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A purine-rich splicing enhancer from a constitutive exon has been shown to shift the alternative splicing of calcitonin/CGRP pre-mRNA in vivo. Here, we demonstrate that the native repetitive GAA sequence comprises the optimal enhancer element and specifically binds a saturable complex of proteins required for general splicing in vitro. This complex contains a 37-kDa protein that directly binds the repetitive GAA sequence and SRp40, a member of the SR family of non-snRNP splicing factors. While purified SR proteins do not stably bind the repetitive GAA element, exogenous SR proteins become associated with the GAA element in the presence of nuclear extracts and stimulate GAA-dependent splicing. These results suggest that repetitive GAA sequences enhance splicing by binding a protein complex containing a sequence-specific RNA binding protein and a general splicing activator that, in turn, recruit additional SR proteins. This type of mechanism resembles the tra/tra-2-dependent recruitment of SR proteins to the Drosophila doublesex alternative splicing regulatory element.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chlorarachniophyte algae contain a complex, multi-membraned chloroplast derived from the endosymbiosis of a eukaryotic alga. The vestigial nucleus of the endosymbiont, called the nucleomorph, contains only three small linear chromosomes with a haploid genome size of 380 kb and is the smallest known eukaryotic genome. Nucleotide sequence data from a subtelomeric fragment of chromosome III were analyzed as a preliminary investigation of the coding capacity of this vestigial genome. Several housekeeping genes including U6 small nuclear RNA (snRNA), ribosomal proteins S4 and S13, a core protein of the spliceosome [small nuclear ribonucleoprotein (snRNP) E], and a cip-like protease (clpP) were identified. Expression of these genes was confirmed by combinations of Northern blot analysis, in situ hybridization, immunocytochemistry, and cDNA analysis. The protein-encoding genes are typically eukaryotic in overall structure and their messenger RNAs are polyadenylylated. A novel feature is the abundance of 18-, 19-, or 20-nucleotide introns; the smallest spliceosomal introns known. Two of the genes, U6 and S13, overlap while another two genes, snRNP E and clpP, are cotranscribed in a single mRNA. The overall gene organization is extraordinarily compact, making the nucleomorph a unique model for eukaryotic genomics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated two regions of the viral RNA of human immunodeficiency virus type 1 (HIV-1) as potential targets for antisense oligonucleotides. An oligodeoxynucleotide targeted to the U5 region of the viral genome was shown to block the elongation of cDNA synthesized by HIV-1 reverse transcriptase in vitro. This arrest of reverse transcription was independent of the presence of RNase H activity associated with the reverse transcriptase enzyme. A second oligodeoxynucleotide targeted to a site adjacent to the primer binding site inhibited reverse transcription in an RNase H-dependent manner. These two oligonucleotides were covalently linked to a poly(L-lysine) carrier and tested for their ability to inhibit HIV-1 infection in cell cultures. Both oligonucleotides inhibited virus production in a sequence- and dose-dependent manner. PCR analysis showed that they inhibited proviral DNA synthesis in infected cells. In contrast, an antisense oligonucleotide targeted to the tat sequence did not inhibit proviral DNA synthesis but inhibited viral production at a later step of virus development. These experiments show that antisense oligonucleotides targeted to two regions of HIV-1 viral RNA can inhibit the first step of viral infection--i.e., reverse transcription--and prevent the synthesis of proviral DNA in cell cultures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MAP30 (Momordica anti-HIV protein of 30 kDa) and GAP31 (Gelonium anti-HIV protein of 31 kDa) are anti-HIV plant proteins that we have identified, purified, and cloned from the medicinal plants Momordica charantia and Gelonium multiflorum. These antiviral agents are capable of inhibiting infection of HIV type 1 (HIV-1) in T lymphocytes and monocytes as well as replication of the virus in already-infected cells. They are not toxic to normal uninfected cells because they are unable to enter healthy cells. MAP30 and GAP31 also possess an N-glycosidase activity on 28S ribosomal RNA and a topological activity on plasmid and viral DNAs including HIV-1 long terminal repeats (LTRs). LTRs are essential sites for integration of viral DNA into the host genome by viral integrase. We therefore investigated the effect of MAP30 and GAP31 on HIV-1 integrase. We report that both of these antiviral agents exhibit dose-dependent inhibition of HIV-1 integrase. Inhibition was observed in all of the three specific reactions catalyzed by the integrase, namely, 3' processing (specific cleavage of the dinucleotide GT from the viral substrate), strand transfer (integration), and "disintegration" (the reversal of strand transfer). Inhibition was studied by using oligonucleotide substrates with sequences corresponding to the U3 and U5 regions of HIV LTR. In the presence of 20 ng of viral substrate, 50 ng of target substrate, and 4 microM integrase, total inhibition was achieved at equimolar concentrations of the integrase and the antiviral proteins, with EC50 values of about 1 microM. Integration of viral DNA into the host chromosome is a vital step in the replicative cycle of retroviruses, including the AIDS virus. The inhibition of HIV-1 integrase by MAP30 and GAP31 suggests that impediment of viral DNA integration may play a key role in the anti-HIV activity of these plant proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ser/Arg-rich proteins (SR proteins) are essential splicing factors that commit pre-messenger RNAs to splicing and also modulate 5' splice site choice in the presence or absence of functional U1 small nuclear ribonucleoproteins (snRNPs). Here, we perturbed the U1 snRNP in HeLa cell nuclear extract by detaching the U1-specific A protein using a 2'-O-methyl oligonucleotide (L2) complementary to its binding site in U1 RNA. In this extract, the standard adenovirus substrate is spliced normally, but excess amounts of SR proteins do not exclusively switch splicing from the normal 5' splice site to a proximal site (site 125 within the adenovirus intron), suggesting that modulation of 5' splice site choice exerted by SR proteins requires integrity of the U1 snRNP. The observation that splicing does not necessarily follow U1 binding indicates that interactions between the U1 snRNP and components assembled on the 3' splice site via SR proteins may also be critical for 5' splice site selection. Accordingly, we found that SR proteins promote the binding of the U2 snRNP to the branch site and stabilize the complex formed on a 3'-half substrate in the presence or absence of functional U1 snRNPs. A novel U2/U6/3'-half substrate crosslink was also detected and promoted by SR proteins. Our results suggest that SR proteins in collaboration with the U1 snRNP function in two distinct steps to modulate 5' splice site selection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alternative splicing of precursor messenger RNAs (pre-mRNAs) is an important mechanism for the regulation of gene expression. The members of the SR protein family of pre-mRNA splicing factors have distinct functions in promoting alternative splice site usage. Here we show that SR proteins are required for the first step of spliceosome assembly, interaction of the U1 small nuclear ribonucleoprotein complex (U1 snRNP) with the 5' splice site of the pre-mRNA. Further, we find that individual SR proteins have distinct abilities to promote interaction of U1 snRNP with alternative 5' splice junctions. These results suggest that SR proteins direct 5' splice site selection by regulation of U1 snRNP assembly onto the pre-mRNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

by Fredonia Jane Ringo ...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

by Josephine C. Goldmark.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fused in sarcoma (FUS) is a ubiquitously expressed RNA-binding protein proposed to function in various RNA metabolic pathways, including transcription regulation, pre-mRNA splicing, RNA transport and microRNA processing. Mutations in the FUS gene were identified in patients with amyotrophic lateral sclerosis (ALS), but the pathomechanisms by which these mutations cause ALS are not known. Here, we show that FUS interacts with the minor spliceosome constituent U11 snRNP, binds preferentially to minor introns and directly regulates their removal. Furthermore, a FUS knockout in neuroblastoma cells strongly disturbs the splicing of minor intron-containing mRNAs, among them mRNAs required for action potential transmission and for functional spinal motor units. Moreover, an ALS-associated FUS mutant that forms cytoplasmic aggregates inhibits splicing of minor introns by trapping U11 and U12 snRNAs in these aggregates. Collectively, our findings suggest a possible pathomechanism for ALS in which mutated FUS inhibits correct splicing of minor introns in mRNAs encoding proteins required for motor neuron survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Each volume has also special t. p.; vol. 4 issued in two parts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Issued in separate vols. by classification, A through Z.