93 resultados para Tubulações
Resumo:
Pressure drop and energy efficiency of compressors in chemical plants are the focus of this study. Its objective is an analysis of possible sources of energy loss through the study of pressure loss in pipes, calculation of thermodynamic efficiency of the compressors. Important issues are raised for this analysis such as the types of compressors, the operating range of each compressor, compression types, as well as a study of accessories such as filters and valves. After studying these issues was carried out calculations of pressure drop step-bystep and with a software WIPCD. Followed by the calculation of efficiency of compressors and monthly energy cost of each compressor in operation. Finally, the study shows some suggestions for immediate improvements, changes and suggestions for possible future purchases of compressors
Resumo:
Being the corrosion one of the great problems facing the industry today, specifically the internal corrosion of pipes in chemical and petrochemical industries, hence this work proposes a new type of internal coating in order to avoid fouling and decrease the pressure loss in the flow. For this, we use a composition of vinyl ester resins and manometric loads, which after cleaning and preparation of the internal surface of the tube will be applied through a process of centrifugation, adjusted by a lathe. After curing the resin, a test of roughness will be realized in order to analyze the reduction of friction factor and thus be able to conclude whether there was a significant decrease in pressure drop. With test results in hand, we hope to obtain a coating that meets most of the properties required by the industry and to provide a reduction in operating costs and a visible improvement in the conditions of use of the pipe
Resumo:
The oil extraction in deep waters sparked new areas of knowledge, the creation of engineering courses dedicated just to these processes and a wide field of analysisvoiding multiple impacts in case of faults, mainly the economic and environmental. This paper aims to show on the effects and causes of fatigue failure in steel tubes used for oil and gastransportation (linepipe), mainly caused by vortex induced vibrations, or VIV. To make this, through laboratory tests, it found trough the curve Stress versus Number of Cycles, and thus estimating that with a stress value of 350 MPa or less, the fatigue life cycle of the API 5CT T95 (1% Cr) pipe is estimated infinite. It could conclude that the analyzed material has good fatigue failure resistance for offshore use, taking into account only the influence of VIV's, since there are no stress concentrators
Resumo:
The research addresses the need for detailed geological and geotechnical investigations in pipeline’s design, given the diversity of geological units crossed by these works along its layout, which often extends for hundreds of miles. For its large size, this type of work often goes through different states and regions with very different characteristics in terms of topography, vegetation, geology and geotechnical conditions. For a better use of these investigations in order to avoid unnecessary costs and inefficient results, some authors recommend that steps be taken to study, seeking a progressive detail of the pipeline’s implantation area. The main objective of the study is to describe, analyze and correlate the proposals for geological and geotechnical’s investigation recommended by the authors selected. Nogueira Junior & Marques (1998) suggest that for better effectiveness of geological and geotechnical investigations associated with the deployment of pipelines, different research methods are applied sequentially in five major stages of the building. Rocha et al (2008) recommend that, for the pipeline’s implantation using horizontal directional drilling, investigations are performed in three phases of study, to be developed in coordination with the project stages. For Gelinas & Mathy (2004), when time and budget constraints permit, geotechnical investigations for directional drilling projects for pipelines must be made in four sequential phases. Heinz (2008) suggests that the geotechnical investigations for pipeline’s implantation using horizontal directional drilling at crossings of water bodies are carried out in three successive stages. By the development of research, we could see that all the different proposals recommend studies in sequential phases, starting from a more general scale for a more specific, seeking a progressive understanding of the geological model of the area where you intend to deploy the pipeline
Resumo:
In this work a study about the mechanical properties of the API 5L X70 steel, with or without heat treating, has been made, with the intetion of assess the influence of cooling after the austenitization heat treating by air cooling (normalizing) and a rapid cooling with oil (tempering). This steel is known by high strength and ductility values and it is commonly used in the manufacture of oil pipes. The growing energy demand encouraged the study and manufacture of this material. Although this microalloyed dispense subsequent heat treatings, it was proven that its implementation is very advantageous for this type of application, improving hardness and plastic stability. It was also assessed that the faster the cooling rate is, the better will be these properties
Resumo:
The technological advancement in order to improve the methods of obtaining energy sources such as oil and natural gas is mainly motivated by the recent discovery of oil reserves. So, increasingly , there is a need for a thorough knowledge of the materials used in the manufacture of pipelines for transportation and exploration of oil and natural gas. The steels which follow the API standard (American Petroleum Institute), also known as high strenght low alloy (hsla), are used in the manufacture of these pipes, as they have, with their welded joints, mechanical properties to withstand the working conditions to which these ducts will be submitted . The objective of this study is to evaluate the fatigue behavior in microalloyed steel grade API 5L X80 welded by process HF / ERW . For this, axial fatigue tests to obtain S-N curve (stress vs. number of cycles ) were conducted. To complement the study, it was performed metallographic , fractographic , Vickers hardness tests and tensile tests to characterize the mechanical properties of the steel and check whether the values satisfy the specifications of the API 5L standard . From the fatigue tests , it was concluded that the surface finish influences directly on the fatigue life of the material
Resumo:
In order to study the mechanical properties of micro alloyed steel API 5L X70, a material used to manufacture pipes for pipeline transportation lines for use in oil and gas, a study was made of toughness, tensile strength, impact strength, hardness and microstructure steel. To perform these various tests were made where they can acquire the characteristics of the material. Were performed at the Faculty of Engineering in Guaratinguetá in the Department of Materials and Technology and the tensile tests, Charpy impact test, metallography and hardness testing of material API 5L X70, all tests were done with the help of technical laboratories. With these data can be an analysis of the material about his tenacity, his toughness and fragility, its hardness, its yield strength and its maximum voltage. After being asked the analyzes discussed the results showed that the micro alloyed steel API 5L X70 steel is a very tenacious, it absorbs impact energy of 300 Joules though without a break for the full body of evidence showing its tenacity
Resumo:
On the grounds of the great advances achieved over recent years, the process HF/ERW (High-Frequency/Electric Resistance Welding)welded pipe have played an active role in the oil and gas industry for deep water applications, at high and extremely low temperatures, under high pressure and in highly corrosive environments, gradually replacing manufactured pipes by other processes. However, studies have shown that defects in the welded joints are a the leading causes of pipelines failures, which has required the determination of toughness values in this region, in compliance with the strict recommendations of the codes and standards with manufacturers and construction companies, on the oil and gas sector. As part of the validation process required toughness values, this research project focuses on a microstructural analysis in HF / ERW tubes microalloyed, steel grade API 5CT N80, designed to explore oil and gas in deep waters, the subject of strategic relevance to the country because of the recent discoveries in the Santos mega fields: Tupi and Libra (pre-salt). In this scientific work will be presented and discussed the results of mechanical tensile and Charpy, a few CTOD tests curves (showing the trend of toughness values to be obtained), and the microstructures of the base material obtained by optical microscopy, with special emphasis on the formation of non-metallic inclusions in the welded joint
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
The objective of this research is to present a study on a relationship between the local head loss in connection of emitters in pipes with different diameters used in drip irrigation, with the online geometry of the emitter connectors, that allows an easy quantification of such head loss regarding of the size of the connectors. The experiment was carried out according to the Reynolds Numbers at a turbulent flow interval, obtained by the variation of the pipe outflow at a constant temperature of water. The results indicated that the friction factor of the Darcy-Weisbach equation can be estimated by the Blasius equation with the coefficients b = 0.300 and m = 0.25, for the above mentioned pipes. The head losses produced by the connections of the emitters, in relation to the pipe without emitter, was of 62%. A relationship between the kinetic load coefficient (K) and the index of blockage (IO) provoked by the online connector is presented by an algebraic equation which shows a coefficient of adjustment of approximately 96%.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In the pumping pipelines the located load losses are very important since they have direct influence on hydraulic design of an irrigation system, especially regarding the concentric reducers used in the distribution lines. Hence this work was conducted in the Laboratório de Hidráulica do Centro Federal de Educação Tecnológica de Uberaba. We analyzed 03 concentric reducers PVC 75 x 50 mm, 50 mm and 35 x 35 x 1 "operating at different flow rates. The performance of the tests with the variation of flow in every situation possible to obtain equations to estimate the loss. The equation models presented a high setting, thus enabling the determination of the localized head loss in a situation closer to field reality. For the reduction of 75 x 50 x 35 mm and 50 mm at a flow rate 16.97 m³ h-1 the pressure drop reduction was obtained respectively 0.9263 and 2.7408 mca. To the reduction of 35 x 1 "at a flow rate of 6.02 m³ h-1 was obtained 2.9304 mca pressure drop reduction. The located losses produced by these reductions are relatively high and should be considered with great discretion in hydraulic design of the irrigation system.
Resumo:
Having in mind that petroleum's history presents a huge growth, the exploration and production areas have been receiving lots of investments, in order to attend the increasing demand for gas and petroleum. Looking through that scenario, new technologies have been evolving in favor of discovering new natural petroleum deposits and act with effectiveness in truly deep waters without giving up the worldwide best operational security practices. The use of rigid pipes in marine installations have been rising quickly and, thanks to this reality, the many storage and pipe launching forms became study objects and are getting improved. The analysis of steel API X70 characteristics, proving that they are suitable for use in pipes developed to transport gas and petroleum is the theme of this presentation. A tensile test was conducted to determine the base metal's mechanical properties, draining's tension, traction's resistance, elasticity's modulus and maximum tension. An aspect that is concerning too is the metallographic analysis, in order to determine the studied iron's microstructure. Results of analyzes showed that the steel has high resistance, with good capacity for deformation and well defined yield point, concluding suitable for the application in question
Resumo:
This study aims to develop a computer program based on VBA programming language, using Microsoft Excel, for designing pumping systems of water. The program allows the user to determine the economical diameter, using the equation of Bresse, for a given installation, since the geometric elevation, the material of the tube, the accessories along the line and the volumetric flow are known. In addition, the program estimates the total annual cost of the installation for three different diameters, in order to compare which diameter is more advantageous from an economical perspective. The program interface is designed to be simple and intuitive with the intention of being didactic and offering to engineering students an advantageous tool to analyze this type of project. Microsoft Excel was chosen for this work because is present in virtually all personal computer, and is an indispensable tool for educational purposes
Resumo:
Over the past two years, Brazil has been facing a major water crisis in its history and the state of Sao Paulo is the one that has been going through worst difficulties. In this scenario, all water users should do everything possible so that the consumption of water resources is carried out in a sustainable manner. In this context, the companies responsible for the public water supply must increase the efficiency of water resource management. It is indispensable combating losses in the public supply system. When there is a non-visible leak in a pipe, the wastewater volume can be high, but in this case, the water returns to nature and continues to participate in the hydrological cycle. The economic loss corresponds to the value added to the product water, which includes the intrinsic costs of exploration, processing and distribution. This damage results in a reduced availability of financial resources of sanitation companies to invest in environmentally friendly solutions. This study aimed to diagnose the water distribution system in the city of Guaratinguetá (SP), held by the Companhia de Serviços de Água, Esgoto e Resíduos de Guaratinguetá (SAEG), to propose measures to combat water loss. Among the proposed measures, there is the monitoring of losses, planning for replacement of old pipes and company awareness as a whole in relation to combat water losses