996 resultados para Tuberculosis Vaccines -- administration
Resumo:
Of the hundreds of new tuberculosis ( TB) vaccine candidates some have therapeutic value in addition to their prophylactic properties. This is the case for the DNA vaccine encoding heat-shock protein 65 (DNAhsp65) from Mycobacterium leprae. However, there are concerns about the use of DNA vaccines in certain populations such as newborns and pregnant women. Thus, the optimization of vaccination strategies that circumvent this limitation is a priority. This study evaluated the efficacy of a single dose subunit vaccine based on recombinant Hsp65 protein against infection with M. tuberculosis H37Rv. The Hsp65 protein in this study was either associated or not with immunostimulants, and was encapsulated in biodegradable PLGA microspheres. Our results demonstrate that the protein was entrapped in microspheres of adequate diameter to be engulfed by phagocytes. Mice vaccinated with a single dose of Hsp65-microspheres or Hsp65 + CpG-microspheres developed both humoral and cellular-specific immune responses. However, they did not protect mice against challenge with M. tuberculosis. By contrast, Hsp65+KLK-microspheres induced specific immune responses that reduced bacilli loads and minimized lung parenchyma damage. These data suggest that a subunit vaccine based on recombinant protein Hsp65 is feasible.
Resumo:
A new tuberculosis vaccine is urgently needed. Prime-boost strategies are considered very promising and the inclusion of BCG is highly desirable. In this investigation, we tested the protective efficacy of BCG delivered in the neonatal period followed by boosters in the adult phase with a DNA vaccine containing the hsp65 gene from Mycobacterium leprae (pVAXhsp65). Immune responses were characterized by serum anti-hsp65 antibody levels and IFN-gamma and IL-5 production by the spleen. Amounts of these cytokines were also determined in lung homogenates. Protective efficacy was established by the number of colony-forming units (CFU) and histopathological analysis of the lungs after challenge with Mycobacterium tuberculosis. Immunization with BCG alone triggered a significant reduction of CFU in the lungs and also clearly preserved the pulmonary parenchyma. BCG priming also increased the immunogenicity of pVAXhsp65. However, boosters with pVAXhsp65 or the empty vector abolished the protective efficacy of BCG. Also, higher IL-5 levels were produced by spleen and lungs after DNA boosters. These results demonstrated that neonatal BCG immunization followed by DNAhsp65 boosters is highly immunogenic but is not protective against tuberculosis.
Resumo:
Background: Tuberculosis is a major threat to human health. The high disease burden remains unaffected and the appearance of extremely drug-resistant strains in different parts of the world argues in favor of the urgent need for a new effective vaccine. One of the promising candidates is heat-shock protein 65 when used as a genetic vaccine (DNAhsp65). Nonetheless, there are substantial data indicating that BCG, the only available anti-TB vaccine for clinical use, provides other important beneficial effects in immunized infants. Methods: We compared the protective efficacy of BCG and Hsp65 antigens in mice using different strategies: i) BCG, single dose subcutaneously; ii) naked DNAhsp65, four doses, intramuscularly; iii) liposomes containing DNAhsp65, single dose, intranasally; iv) microspheres containing DNAhsp65 or rHsp65, single dose, intramuscularly; and v) prime-boost with subcutaneous BCG and intramuscular DNAhsp65. Results: All the immunization protocols were able to protect mice against infection, with special benefits provided by DNAhsp65 in liposomes and prime-boost strategies. Conclusion: Among the immunization protocols tested, liposomes containing DNAhsp65 represent the most promising strategy for the development of a new anti-TB vaccine.
Resumo:
Background The continued increase in tuberculosis (TB) rates and the appearance of extremely resistant Mycobacterium tuberculosis strains (XDR-TB) worldwide are some of the great problems of public health. In this context, DNA immunotherapy has been proposed as an effective alternative that could circumvent the limitations of conventional drugs. Nonetheless, the molecular events underlying these therapeutic effects are poorly understood. Methods We characterized the transcriptional signature of lungs from mice infected with M. tuberculosis and treated with heat shock protein 65 as a genetic vaccine (DNAhsp65) combining microarray and real-time polymerase chain reaction analysis. The gene expression data were correlated with the histopathological analysis of lungs. Results The differential modulation of a high number of genes allowed us to distinguish DNAhsp65-treated from nontreated animals (saline and vector-injected mice). Functional analysis of this group of genes suggests that DNAhsp65 therapy could not only boost the T helper (Th)1 immune response, but also could inhibit Th2 cytokines and regulate the intensity of inflammation through fine tuning of gene expression of various genes, including those of interleukin-17, lymphotoxin A, tumour necrosis factor-cl, interleukin-6, transforming growth factor-beta, inducible nitric oxide synthase and Foxp3. In addition, a large number of genes and expressed sequence tags previously unrelated to DNA-therapy were identified. All these findings were well correlated with the histopathological lesions presented in the lungs. Conclusions The effects of DNA therapy are reflected in gene expression modulation; therefore, the genes identified as differentially expressed could be considered as transcriptional biomarkers of DNAhsp65 immunotherapy against TB. The data have important implications for achieving a better understanding of gene-based therapies. Copyright (C) 2008 John Wiley & Sons, Ltd.
Route of administration of chimeric BPV1VLP determines the character of the induced immune responses
Resumo:
To examine the mucosal immune response to papillomavirus virus-like particles (PV-VLP), mice were immunized with VLP intrarectally (i.r.), intravaginally (i.va.) or intramuscularly (i.m.) without adjuvant. PV-VLP were assembled with chimeric BPV-1 L1 proteins incorporating sequence from HIV-1 gp 120, either the V3 loop or a shorter peptide incorporating a known CTL epitope (HIVP18I10). Antibody specific for BPV-1 VLP and P18 peptide was detected in serum following i.m., but not i.r. or i.va. immunization. Denatured VLP induced a much reduced immune response when compared with native VLP, Immune responses following mucosal administration of VLP were generally weaker than following systemic administration. VLP specific IgA was higher in intestine washes following i.r. than i.va. immunization, and higher in vaginal washes following i.m. than i.r. or i.va. immunization. No differences in specific antibody responses were seen between animals immunized with BPV-1 P18 VLP or with BPV-1 V3 VLP. Cytotoxic T lymphocyte precursors specific for the P18 CTL epitope were recovered from the spleen following i.m., i.va. or i.r. immunization with P18 VLP, and were similarly detected in Peyer's patches following i.m. or i.r. immunization. Thus, mucosal or systemic immunization with PV VLP induces mucosal CTL responses and this may be important for vaccines for mucosal infection with human papillomaviruses and for other viruses.
Resumo:
Immunisation against M. tuberculosis with current available BCG vaccine lacks efficacy in preventing adult pulmonary tuberculosis. Targeting nasal mucosa is an attractive option for a more effective immunization. The delivery of BCG via the intranasal route involves overcoming barriers such as crossing the physical barrier imposed by the mucus layer and ciliar remotion, cellular uptake and intracellular trafficking by antigen presenting cells. Due to its biodegradable, immunogenic and mucoadhesive properties, chitosan particulate delivery systems can act both as vaccine carrier and adjuvant, improving the elicited immune response. In this study, different combinations of Chitosan/Alginate/TPP microparticles with BCG were produced as vaccine systems. The developed microparticle system successfully modulates BCG surface physicochemical properties and promotes effective intracellular uptake by human macrophage cell lines Preliminary immune responses were evaluated after s.c. and intranasal immunisation of BALB/c mice. BCG vaccination successfully stimulated the segregation of IgG2a and IgG1, where intranasal immunisation with chitosan/alginate particulate system efficiently elicited a more equilibrated cellular/humoral immune response.
Resumo:
Tuberculosis is one of the most frequent opportunistic infections after renal transplantation and occurred in 30 of 1264 patients transplanted between 1976 and 1996 at Hospital São Paulo - UNIFESP and Hospital Dom Silvério, Brazil. The incidence of 2.4% is five times higher than the Brazilian general population. The disease occurred between 50 days to 18 years after the transplant, and had an earlier and worse development in patients receiving azathioprine, prednisone and cyclosporine, with 35% presenting as a disseminated disease, while all patients receiving azathioprine and prednisone had exclusively pulmonary disease. Ninety percent of those patients had fever as the major initial clinical manifestation. Diagnosis was made by biopsy of the lesion (50%), positivity to M. tuberculosis in the sputum (30%) and spinal cerebral fluid analysis (7%). Duration of treatment ranged from 6 to 13 months and hepatotoxicity occurred in 3 patients. The patients who died had a significant greater number of rejection episodes and received higher doses of corticosteroid. In conclusion, the administration of cyclosporine changed the clinical and histopathological pattern of tuberculosis occurring after renal transplantation.
Resumo:
A significantly diminished antibody response to hepatitis B vaccine has been demonstrated in adults when the buttock is used as the injection site. However, in Brazil, the buttock continues to be recommended as site of injection for intramuscular administration of vaccines in infants. In this age group, there are no controlled studies evaluating the immunogenicity of the hepatitis B vaccine when administered at this site. In the present study, 258 infants were randomized to receive the hepatitis B vaccine either in the buttock (n = 123) or in the anterolateral thigh muscle (n = 135). The immunization schedule consisted of three doses of hepatitis B vaccine (Engerix B<FONT FACE="Symbol">â</FONT>, 10 mug) at 2, 4 and 9 months of age. There were no significant differences in the proportion of seroconversion (99.3% x 99.2%), or in the geometric mean titer of ELISA anti-HBs (1,862.1 x 1,229.0 mIU/mL) between the two groups. This study demonstrates that a satisfactory serological response can be obtained when the hepatitis B vaccine is administered intramuscularly into the buttock.
Resumo:
The 10-valent pneumococcal conjugate vaccine (PCV10) became available in Portugal in mid-2009 and the 13-valent vaccine (PCV13) in early 2010. The incidence of invasive pneumococcal disease (IPD) in patients aged under 18 years decreased from 8.19 cases per 100,000 in 2008–09 to 4.52/100,000 in 2011–12. However, IPD incidence due to the serotypes included in the 7-valent conjugate vaccine (PCV7) in children aged under two years remained constant. This fall resulted from significant decreases in the number of cases due to: (i) the additional serotypes included in PCV10 and PCV13 (1, 5, 7F; from 37.6% to 20.6%), particularly serotype 1 in older children; and (ii) the additional serotypes included in PCV13 (3, 6A, 19A; from 31.6% to 16.2%), particularly serotype 19A in younger children. The decrease in serotype 19A before vaccination indicates that it was not triggered by PCV13 administration. The decrease of serotype 1 in all groups, concomitant with the introduction of PCV10, is also unlikely to have been triggered by vaccination, although PCVs may have intensified and supported these trends. PCV13 serotypes remain major causes of IPD, accounting for 63.2% of isolates recovered in Portugal in 2011–12, highlighting the potential role of enhanced vaccination in reducing paediatric IPD in Portugal.
Resumo:
OBJECTIVE: Tuberculosis (TB) is highly prevalent among HIV-infected people, including those receiving combination antiretroviral therapy (cART), necessitating a well tolerated and efficacious TB vaccine for these populations. We evaluated the safety and immunogenicity of the candidate TB vaccine M72/AS01 in adults with well controlled HIV infection on cART. DESIGN: A randomized, observer-blind, controlled trial (NCT00707967). METHODS: HIV-infected adults on cART in Switzerland were randomized 3 : 1 : 1 to receive two doses, 1 month apart, of M72/AS01, AS01 or 0.9% physiological saline (N = 22, N = 8 and N = 7, respectively) and were followed up to 6 months postdose 2 (D210). Individuals with CD4⁺ cell counts below 200 cells/μl were excluded. Adverse events (AEs) including HIV-specific and laboratory safety parameters were recorded. Cell-mediated (ICS) and humoral (ELISA) responses were evaluated before vaccination, 1 month after each dose (D30, D60) and D210. RESULTS: Thirty-seven individuals [interquartile range (IQR) CD4⁺ cell counts at screening: 438-872 cells/μl; undetectable HIV-1 viremia] were enrolled; 73% of individuals reported previous BCG vaccination, 97.3% tested negative for the QuantiFERON-TB assay. For M72/AS01 recipients, no vaccine-related serious AEs or cART-regimen adjustments were recorded, and there were no clinically relevant effects on laboratory safety parameters, HIV-1 viral loads or CD4⁺ cell counts. M72/AS01 was immunogenic, inducing persistent and polyfunctional M72-specific CD4⁺ T-cell responses [medians 0.70% (IQR 0.37-1.07) at D60] and 0.42% (0.24-0.61) at D210, predominantly CD40L⁺IL-2⁺TNF-α⁺, CD40L⁺IL-2⁺ and CD40L⁺IL-2⁺TNF-α⁺IFN-γ⁺]. All M72/AS01 vaccines were seropositive for anti-M72 IgG after second vaccination until study end. CONCLUSION: M72/AS01 was clinically well tolerated and immunogenic in this population, supporting further clinical evaluation in HIV-infected individuals in TB-endemic settings.
Resumo:
Adjuvants have been shown since many years to have an important role in enhancing the immune responses against the co-administered antigens used as vaccines. The continuous study of the mechanism of action of adjuvants is necessary to develop further safe and efficacious vaccines. Complete Freund's adjuvant (CFA) is currently in use as adjuvant to induce some autoimmune diseases in murine models, therefore the study of the mechanisms involved in the generation of the related immune responses could be instrumental for the understanding of the induction of inflammatory Thl7 responses. In the present work, we showed in C57B1/6 mice that CFA peripheral administration induces very early, at 6 h, a potent influx of CDllb+ cells, mainly neutrophils (CD11b+Ly6GhighLy6Cint) and monocytes (CD11b+Ly6GlowLy6Chigh), in the draining lymph node. By investigating the route by which neutrophils reach the lymph node we observed that, around 20% of them arrive from the afferent lymph and the majority stains positive for Mycobacterium tuberculosis. We also observed a correlation between the influx of neutrophils and an increase in IL-23 and IL-Ιβ, together with several inflammatory chemokines, in the draining lymph node. Concomitantly, we detected the expression of the IL-23 receptor on CDllc+ DCs. Moreover, we confirmed the ability of murine neutrophils to express IL-23 both, in vitro by stimulating bone-marrow extracted PMNs with Mycobacterium tuberculosis, and on total cells from draining lymph node by immunohistochemistry. We also observed by in vivo priming a reduction in the percentage of IFN-γ and CXCR3 expressing Τ cells upon depletion of neutrophils. Altogether, we show that upon stimulation from the periphery, the draining lymph node undergo changes in cytokine/chemokine production leading to the recruitment of different leukocytes subpopulations. Here we show that CFA induces a rapid influx of neutrophils which are responsible for the production of IL-23 that in turn influences the generation of Τ helper cells.
Resumo:
The bacillus Calmette-Guérin (BCG) vaccine is the only licensed vaccine for human use against tuberculosis (TB). Although controversy exists about its efficacy, the BCG vaccine is able to protect newborns and children against disseminated forms of TB, but fails to protect adults against active forms of TB. In the last few years, interest in the mucosal delivery route for the vaccine has been increasing owing to its increased capacity to induce protective immune responses both in the mucosal and the systemic immune compartments. Here, we show the importance of this route of vaccination in newly developed vaccines, especially for vaccines against TB.
Resumo:
T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity.
Resumo:
Although the attenuated Mycobacterium bovis Bacillus Calmette-Guérin (BCG) vaccine has been used since 1921, tuberculosis (TB) control still proceeds at a slow pace. The main reason is the variable efficacy of BCG protection against TB among adults, which ranges from 0-80%. Subsequently, the mc2-CMX vaccine was developed with promising results. Nonetheless, this recombinant vaccine needs to be compared to the standard BCG vaccine. The objective of this study was to evaluate the immune response induced by mc2-CMX and compare it to the response generated by BCG. BALB/c mice were immunised with both vaccines and challenged withMycobacterium tuberculosis (Mtb). The immune and inflammatory responses were evaluated by ELISA, flow cytometry, and histopathology. Mice vaccinated with mc2-CMX and challenged with Mtb induced an increase in the IgG1 and IgG2 levels against CMX as well as recalled specific CD4+ T-cells that produced T-helper 1 cytokines in the lungs and spleen compared with BCG vaccinated and challenged mice. Both vaccines reduced the lung inflammatory pathology induced by the Mtb infection. The mc2-CMX vaccine induces a humoral and cellular response that is superior to BCG and is efficiently recalled after challenge with Mtb, although both vaccines induced similar inflammatory reductions.
Resumo:
Gas-filled microbubbles (MB) are a very promising alternative to the currently evaluated lipid- or polymer-based particulate Ag delivery systems. We recently demonstrated the ability of MB to deliver associated Ag to DC, to activate them and thereby induce both humoral and cellular immune responses. We now extended the characterization of MB as antigen-delivery system by appraising the efficiency of MB-associated ovalbumin (OVA-MB) at protecting mice against pathogen infection. Ultrasound-mediated imaging demonstrated that the administration of OVA via MB generates a depot at the injection site that lasts for several hours. We found that OVA-MB injected subcutaneously is far more effective at inducing specific Ab and T cell immunity than immunization with free OVA. Moreover, a covalent link between MB and OVA causes a stronger bias towards a Th1-type of immune response than adsorption of the Ag or its covalent link to liposomes of the same lipid composition. Finally, vaccination of mice with OVA-MB partially protects against a systemic infection with OVA-expressing Listeria monocytogenes. The vaccine induces specific effector CD8 T cell responses capable of decreasing more than 100 fold the bacterial load. MB thus represent a potent Ag delivery system for vaccination against intracellular infectious agents.