999 resultados para Triaxial shear strength


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The aim of this study was to investigate the shear strength between distinct associations of different commercial composite resins and their fracture modes.Methods: Nine composite-composite associations (n = 90) were prepared for shear strength evaluation and separated into the following groups: Z/Z (Filtek Z250 UD + Filtek Z250 A2); Z/ D (Filtek Z250 UD + Durafill VS A2); Z/S (Filtek Z250 UD + Filtek Supreme YT); C/C (Charisma OA2 + Charisma A2); C/D (Charisma OA2 + Durafill VS A2); C/S (Charisma OA2 + Filtek Supreme YT); H/H (Herculite XRV B2D + Herculite XRV B2E); H/D (Herculite XRV B2D + Durafill VS A2); H/S (Herculite XRV B2D + Filtek Supreme YT). Shear tests were carried out using universal mechanical test equipment with a load of 200 kgf and speed of 0.5 mm/min. Ultimate shear strength data (MPa) from all tested groups were submitted to analysis of variance (one-way ANOVA) and the Tukey test. The fractured surfaces of the test samples were visually evaluated by binocular stereomicroscope at 20 times magnification. Fractures were classified as either adhesive or cohesive or mixed.Results: The highest ultimate shear strength observed for composite-composite associations was found for the groups: Z/Z, C/S, H/H, H/S, Z/S and C/C. Those associations containing the Durafill resin were weaker than the others.Conclusion: Microparticle RBC associations presented lower shear strength than hybrid and/or nanoparticle RBC associations, once the only significant difference was found when the Durafill resin was involved. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A central goal in unsaturated soil mechanics research is to create a smooth transition between traditional soil mechanics approaches and an approach that is applicable to unsaturated soils. Undrained shear strength and the liquidity index of reconstituted or remoulded saturated soils are consistently correlated, which has been demonstrated by many studies. In the liquidity index range from 1 (at w(l)) to 0 (at w(p)), the shear strength ranges from approximately 2 kPa to 200 kPa. Similarly, for compacted soil, the shear strength at the plastic limit ranges from 150 kPa to 250 kPa. When compacted at their optimum water content, most soils have a suction that ranges from 20 kPa to 500 kPa; however, in the field, compacted materials are subjected to drying and wetting, which affect their initial suction and as a consequence their shear strength. Unconfined shear tests were performed on five compacted tropical soils and kaolin. Specimens were tested in the as-compacted condition, and also after undergoing drying or wetting. The test results and data from prior literature were examined, taking into account the roles of void ratio, suction, and relative water content. An interpretation of the phenomena that are involved in the development of the undrained shear strength of unsaturated soils in the contexts of soil water retention and Atterberg limits is presented, providing a practical view of the behaviour of compacted soil based on the concept of unsaturated soil. Finally, an empirical correlation is presented that relates the unsaturated state of compacted soils to the unconfined shear strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A proposed adequation of NBR 6118, Item 7.4, related to shear strength of reinforced concrete beams is presented with aims to application on circular cross-section. The actual expressions are most suitable to rectangular cross-section and some misleading occurs when applied to circular sections at determination of VRd2, Vc and Vsw, as consequence of bw (beam width) and d (effective depth) definitions as well as the real effectiveness of circular stirrups. The proposed adequation is based on extensive bibliographic review and practical experience with a great number of infrastructure elements, such as anchored retaining pile walls, where the use of circular reinforced concrete members is frequent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim of the investigation was to assess the effect of different surface treatments on the bond strength of veneering ceramics to zirconia. In a shear test, the influences of polishing, sandblasting, and silica-coating of the zirconia surface on bonding were assessed with five different veneering ceramics. In addition the effect of liner application was examined. With one veneering ceramic, the impact of regeneration firing of zirconia was also evaluated. Statistical analysis was performed with one-way ANOVA and post hoc Scheffé's test. Failure in every case occurred in the veneering ceramic adjacent to the interface with a thin layer of ceramic remaining on the zirconia surface, indicating that bond strength was higher than the cohesive strength of the veneering ceramic. Shear strength ranged from 23.5 +/- 3.4 MPa to 33.0 +/- 6.8 MPa without explicit correlation to the respective surface treatment. Regeneration firing significantly decreased the shear strength of both polished and sandblasted surfaces. Findings of this study revealed that bonding between veneering ceramics and zirconia might be based on chemical bonds. On this note, sandblasting was not a necessary surface pretreatment to enhance bond strength and that regeneration firing was not recommended.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: