933 resultados para Treatment Plants
Resumo:
The good efficiency in a sewage treatment plant (WWTP) is a great importance to the environment. The management of electromechanical equipment installed in these stations is a major challenge due to the fact that they are installed on areas of difficult access and maintenance unhealthy and making the time for the correction of any faults is extended. This paper proposes the development of a Wireless Sensor Network (WSN), in order to monitor electromechanical equipment, allowing the Concessionaire a predictive control in real time. The design of a wireless sensors network for monitoring equipment requires not only the development and assembly of the sensor modules, but must also include the development of software for managing the data collected. Thus, this work includes a Zigbee WSN, small, adapted for monitoring of electromechanical equipment and environmental conditions of a WWTP, type stabilization pond, installed in an area of approximately 0.15 km 2 and the average flow of 320 liters of treatment per second. The experimental results show that this monitoring system can perform with the collection of parameters of performance and quality assessment at the station.
Resumo:
When deer populations become locally overabundant, browsing of ornamental and agronomic plants negatively affects plant establishment, survival, and productivity. Milorganite® is a slow-release, organic fertilizer produced from human sewage. We tested Milorganite® as a deer repellent on chrysanthemums (Chrysanthemums morifolium) in an urban/suburban environment, and soybeans (Gycine max) in a rural agriculture environment. Six beds of chrysanthemums at two sites were monitored for 28 to 35 days. Treatment plants received a top dressing of 104 grams of Milorganite® (1120.9 kg/ha). Milorganite® treated plants had more (P < 0.001) terminal buds and achieved greater height (P < 0.002) compared to controls at one site, however damage observed was similar at the second site. In a second experiment, 0.2-ha plots of soybeans (Glycine max) were planted on five rural properties in northeastern Georgia and monitored for ≥ 30 days. Treated areas received 269 kg/ha of Milorganite®. In 4 of 5 sites, Milorganite® delayed browsing on treated plants from 1 week to > 5 weeks post-planting. Duration of the protection appeared to be related to the difference in deer density throughout most of the study areas. Results of this study indicate Milorganite® has potential use as a deer repellent.
Resumo:
More efficient water treatment technologies would decrease the water bodies’ pollution and the actual intake of water resource. The aim of this thesis is an in-depth analysis of the magnetic separation of pollutants from water by means of a continuous-flow magnetic filter subjected to a field gradient produced by permanent magnets. This technique has the potential to improve times and efficiencies of both urban wastewater treatment plants and drinking water treatment plants. It might also substitute industrial wastewater treatments. This technique combines a physico-chemical phase of adsorption and a magnetic phase of filtration, having the potential to bond magnetite with any conventional adsorbent powder. The removal of both Magnetic Activated Carbons (MACs) and zeolite-magnetite mix with the addition of a coagulant was investigated. Adsorption tests of different pollutants (surfactants, endocrine disruptors, Fe(III), Mn(II), Ca(II)) on these adsorbents were also performed achieving good results. The numerical results concerning the adsorbent removals well reproduced the experimental ones obtained from two different experimental setups. In real situations the treatable flow rates are up to 90 m3/h (2000 m3/d).
Resumo:
The EBPR (Enhanced Biological Phosphorus Removal) is a type of secondary treatment in WWTPs (WasteWater Treatment Plants), quite largely used in full-scale plants worldwide. The phosphorus occurring in aquatic systems in high amounts can cause eutrophication and consequently the death of fauna and flora. A specific biomass is used in order to remove the phosphorus, the so-called PAOs (Polyphosphate Accumulating Organisms) that accumulate the phosphorus in form of polyphosphate in their cells. Some of these organisms, the so-called DPAO (Denitrifying Polyphosphate Accumulating Organisms) use as electron acceptor the nitrate or nitrite, contributing in this way also to the removal of these compounds from the wastewater, but there could be side reactions leading to the formation of nitrous oxides. The aim of this project was to simulate in laboratory scale a EBPR, acclimatizing and enriching the specialized biomass. Two bioreactors were operated as Sequencing Batch Reactors, one enriched in Accumulibacter, the other in Tetrasphaera (both PAOs): Tetrasphaera microorganisms are able to uptake aminoacids as carbon source, Accumulibacter uptake organic carbon (volatile fatty acids, VFA). In order to measure the removal of COD, phosphorus and nitrogen-derivate compounds, different analysis were performed: spectrophotometric measure of phosphorus, nitrate, nitrite and ammonia concentrations, TOC (Total Organic Carbon, measuring the carbon consumption), VFA via HPLC (High Performance Liquid Chromatography), total and volatile suspended solids following standard methods APHA, qualitative microorganism population via FISH (Fluorescence In Situ Hybridization). Batch test were also performed to monitor the NOx production. Both specialized populations accumulated as a result of SBR operations; however, Accumulibacter were found to uptake phosphates at higher extents. Both populations were able to remove efficiently nitrates and organic compounds occurring in the feeding. The experimental work was carried out at FCT of Universidade Nova de Lisboa (FCT-UNL) from February to July 2014.
Resumo:
Gaseous emissions are an important problem in municipal solid waste (MSW) treatment plants. The sources points of emissions considered in the present work are: fresh compost, mature compost, landfill leaks and leachate ponds. Hydrogen sulphide, ammonia and volatile organic compounds (VOCs) were analysed in the emissions from these sources. Hydrogen sulphide and ammonia were important contributors to the total emission volume. Landfill leaks are significant source points of emissions of H2S; the average concentration of H2S in biogas from the landfill leaks is around 1700 ppmv. The fresh composting site was also an important contributor of H2S to the total emission volume; its concentration varied between 3.2 and 1.7 ppmv and a decrease with time was observed. The mature composting site showed a reduction of H2S concentration (<0.1 ppmv). Leachate pond showed a low concentration of H2S (in order of ppbv). Regarding NH3, composting sites and landfill leaks are notable source points of emissions (composting sites varied around 30–600 ppmv; biogas from landfill leaks varied from 160 to 640 ppmv). Regarding VOCs, the main compounds were: limonene, p-cymene, pinene, cyclohexane, reaching concentrations around 0.2–4.3 ppmv. H2S/NH3, limonene/p-cymene, limonene/cyclohexane ratios can be useful for analysing and identifying the emission sources.
Resumo:
Of all the costs associated with the operation and maintenance of wastewater treatment plants (WWTPs), those associated with energy use tend to be the most significant. From this point of view, it is hence logical that energy efficiency and saving strategies should be one of the current focuses of debate amongst those involved with the management of WWTPs. The present study's objective is to determine the correlation between size and energy consumption for a WWTP. To this end, 90 WWTPs currently in service were analysed and their energetic impact quantified in terms of kWh/m3 of water treated. The results obtained demonstrate that energy consumption ratio increases as the size of WWTPs decreases, either in terms of treatment volume or population equivalent served.
Resumo:
Given the complex structure of electricity tariffs and their steady growth in Spanish, we've studied its effect over the operating costs of the wastewater treatment plants (WWTP), concluding that in the last three years the revisions of electricity rates have meant increases in electricity costs of 64.5% in the rate 3.1.A and 79.1% in the rate 6.1. This has caused the cost of electricity, which was the most important, has increased from a 44% of total operating costs in the year 2009, to more than a 56% in the year 2012.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
[v. 1]. On-site disposal/septage treatment and disposal -- [v. 2]. Pressure sewers/vacuum sewers -- [v. 3]. Cost/effectiveness analysis.
Resumo:
Mode of access: Internet.
Resumo:
Prepared for the Illinois Dept. of Energy and Natural Resources, Energy and Environmental Affairs Division.
Resumo:
"Project no. 80.160."
Resumo:
Reissue of 1954 ed. published by the Dept's Division of Sanitary Engineering, which was issued as the Dept.'s Circular N820.